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Problem Set 3.1, page 160

1 (a) Why do two isoclinesf(t, y) = s1 andf(t, y) = s2 never meet ?

(b) Along the isoclinef(t, y) = s, what is the slope of all the arrows ?

(c) Then all solution curves go only one way across an .

Solution (a) Isoclines can’t meet becausef(t, y) has one fixed value along an isocline.

(b) The slope of the arrows is fixed ats along the isoclinef(t, y) = s.

(c) All solution curves go one way (with slopes) across the isoclinef(t, y) = s.
2 (a) Are isoclinesf(t, y) = s1 andf(t, y) = s2 always parallel ? Always straight ?

(b) An isoclinef(t, y) = s is a solution curve when its slope equals .

(c) The zeroclinef(t, y) = 0 is a solution curve only wheny is : slope0.

Solution (a) In casef(t, y) does not depend ont (autonomous equation) the isoclines
are horizontal lines. In general isoclines need to be parallel or straight.

(b) If the slope of the isoclinesf(t, y) = s happens to bes (slope of arrows equals slope
of curve, so the arrows go along the isocline) then the isocline is actually a solution
curve. Example: A steady state wheref(y) = 0 has arrows of slope zero. That
horizontal isocline is also the graph of the constant solutiony(t) = Y .

(c) The zerocline is a solution curve when the slope is zero and y is constant.
3 If y1(0) < y2(0), what continuity off(t, y) assures thaty1(t) < y2(t) for all t ?

Solution Two solution curvesy1(t) andy2(t) can’t meet or cross if they are continuous
curves : this will be true iff and∂f/∂y are continuous.

4 The equationdy/dt = t/y is completely safe ify(0) 6= 0. Write the equation as
y dy = t dt and find its unique solution starting fromy(0) = −1. The solution curves
are hyperbolas—can you draw two on the same graph ?

Solution dy/dt = t/y leads to
∫
y dy =

∫
t dt andy2 = t2 + C. If y(0) = −1 then

y(t) = −
√
t2 + 1. The hyperbolasy2 = t2 + C are asymptotic to the45 ◦ and−45 ◦

linesy = t andy = −t.
5 The equationdy/dt = y/t has many solutionsy = Ct in casey(0) = 0. It has

no solution ify(0) 6= 0. When you look at all solution curvesy = Ct, which points
in thet, y plane have no curve passing through ?

Solution The solution curvesy = Ct (allowing all numbersC) go through all points
(t, y) with suitableC = y/t—except the points on the vertical linet = 0 (other
than the origin(0, 0) that all the linesy = Ct will pass through). You cannot solve
dy/dt = y/t with an initial value likey(0) = 1, because the right sidey/t would be
1/0.

6 For y ′ = ty draw the isoclinesty = 1 and ty = 2 (those will be hyperbolas).
On each isocline draw four arrows (they have slopes1 and2). Sketch pieces of so-
lution curves that fit your picture between the isoclines.

Solution The solution curvesdy/dt = ty havedy/y = t dt andln y = 1
2 t

2 + c and
y = exp

(
1
2 t

2 + c
)
= C exp

(
1
2 t

2
)
. Solution curves cross isoclinesf(t, y) = s with
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that slopes! The arrows with that slope are tangent to the curves as they cross the
isocline.

7 The solutions toy ′ = y arey = Cet. ChangingC gives a higher or lower curve. But
y ′ = y is autonomous, its solution curves should be shifting rightand left !

Draw y = 2et andy = −2et to show that they really areright-left shiftsof y = et

andy = − et. The shifted solutions toy ′ = y areet+C and− et+C .

Solution For all autonomous equationsdy/dt = f(y), the solution curves are horizon-
tal shifts of each other. In particular forf(y) = y, the curvesy = Cet shift right-left
asC increases-decreases.

8 For y ′ = 1 − y2 the flat linesy = constant are isoclines1 − y2 = s. Draw the
lines y = 0 andy = 1 andy = −1. On each line draw arrows with slope1 − y2.
The picture says thaty = andy = are steady state solutions. From
the arrows ony = 0, guess a shape for the solution curvey = (et − e−t)/(et + e−t).

Solution The picture will show the horizontal linesy = 1 andy = −1 as “zeroclines”
wheref(t, y) = s = 1− y2 = 0. So those are steady state solution curvesy(t) = Y =
1 or−1.

The isocliney = 0 is thex-axis, along withf(t, y) = 1 − y2 = 1 = s. (The arrows
cross thex-axis at45 ◦, with slopes = 1.) So the solution curves areS-curves going
up from the liney = −1 to the liney = 1, rising at45 ◦ along thex-axis halfway
between those two lines.

9 The parabolay = t2/4 and the liney = 0 are both solution curves fory ′ =
√
|y|.

Those curves meet at the pointt = 0, y = 0. What continuity requirement is failed
by f(y) =

√
|y|, to allow more than one solution through that point ?

Solution The functionf(y) =
√
|y| is continuous aty = 0 but its derivativedf/dy =

1/2
√
|y| blows up (because of1/0.) So two solutions can start from the same initial

valuey(0) = 0, and they do.

10 Supposey = 0 up to timeT is followed by the curvey = (t− T )2/4. Does this solve
y ′ =

√
|y|? Draw thisy(t) going through flat isoclines

√
|y| = 1 and2.

Solution Yes,y ′ =
√
|y| is solved by the constanty(t) = 0. It is also solved by the

curvey(t) = (t− T )2/4 becausedy/dt = (t − T )/2 equals the square root of|y(t)|.
So solution curves can lift off thex-axisy = 0 anywhere they want, and start upwards
on a parabola.

11 The equationy ′ = y2 − t is often a favorite in MIT’s course 18.03 : not too easy.
Why do solutionsy(t) rise to their maximum ony2 = t and then descend ?

Solution Below the parabolay2 = t (which opens to the right instead of opening
upwards) the right side ofdy/dt = y2 − t will be negative. The solution curves have
negative slope and they can’t cross the rising parabola.

12 Constructf(t, y) with two isoclines so solution curves goup through the higher
isocline and other solution curves godownthrough the lower isocline.True or false:
Some solution curve will stay between those isoclines :A continental divide.

Solution We want the isoclinef(t, y) = s = 1 to beabovethe isoclinef(t, y) =
s = −1. A simple example would bef(t, y) = y. Then the equationdy/dt = y has
solution curvesy = Cet, C > 0 goingup through the isoclinef(t, y) = 1 (which is
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the flat liney = 1). The curvesy = Cet with C < 0 go down throughy = −1. The
continental divide is the solution curvey(t) = 0 with C = 0. Certainlyy(t) = 0 does
solvedy/dt = y.

There is always a “continental divide” where solution curves (like water in the Rockies)
can’t choose between the Atlantic and the Pacific.

Problem Set 3.2, page 168

1 Draw Figure 3.6 for a sink (the missing middle figure) withy = c1e
−2t + c2e

−t.
Which term dominates ast → ∞ ? The paths approach the dominating line as they
go in toward zero.The slopes of the lines are−2 and −1 (the numberss1 ands2).

Solution Thec2e−t term dominates att → ∞ since it decays at a slower rate.

Then y(t) =
sinωt

ω(a2 − ω2)
− sinat

a(a2 − ω2)
.

2 Draw Figure 3.7 for a spiral sink (the missing middle figure) with rootss = −1 ± i.
The solutions arey = C1e

−t cos t + C2e
−t sin t. They approach zero because

of the factore−t. They spiral around the origin because ofcos t andsin t.

Solution The spiral goes clockwise in toward(0, 0). Not easy to draw to scale, by
hand!

3 Which path does the solution take in Figure 3.6 ify = et + et/2 ? Draw the
curve(y(t), y′(t)) more carefully starting att = 0 where(y, y′) = (2, 1.5).

Solution As t → ∞, the path of the point(y(t), y ′(t)) comes closer and closer to the
path fory = et—becauseet dominates the other termet/2. The path fory = et

has points(y, y ′) = (et, et) so it is a straight45 ◦ line in the(y, y ′) plane.

4 Which path does the solution take around the saddle in Figure3.6 if y = et/2 + e−t ?
Draw the curve more carefully starting att = 0 where(y, y′) = (2,− 1

2 ).

Solution The functiony = et/2 + e−t comes from exponents12 and−1 (positive and
negative will give asaddle point. The graph shows the spiral is unwinding clockwise
as it leaves the tight spiral and goes outward. For larget the dominant part of(y, y ′)
will be (et/2, 1

2e
t/2) from the growing termet/2 in y.

5 Redraw the first part of Figure 3.6 when the roots are equal :s1 = s2 = 1 andy =
c1e

t + c2te
t. There is nos2-line. Sketch the path fory = et + tet.

Solution y = et+tet hasy ′ = 2et+tet. The larger termtet gives(y, y ′) ≈ (tet, tet)
on the45 ◦ line in they, y ′ plane. Att = 0 it starts from(y(0), y ′(0)) = (1, 2).

6 The solutiony = e2t − 4et gives a source (Figure 3.6), withy ′ = 2e2t − 4et. Starting
at t = 0 with (y, y ′) = (−3,−2), where is(y, y ′) whenet = 1.1 andet = .25 and
et = 2?

Solution Substituting the valuest = ln 1.1 andln 0.25 andln 2, we get:

1. Foret = 1.1 we have(y, y ′) = (−3.19,−1.98)

2. Foret = .25 we have(y, y ′) = (−0.9375,−0.875)

3. Foret = 2 we have(y, y ′) = (−4, 0)
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Those early times don’t show the situation for larget, when the dominant terme2t gives
(y, y ′) = (e2t, 2e2t) and the path approaches a straight linewith slope 2.

7 The solutiony = et(cos t + sin t) hasy ′ = 2et cos t. This spirals out because ofet.
Plot the points(y, y ′) at t = 0 andt = π/2 andt = π, and try to connect them with a
spiral. Note thateπ/2 ≈ 4.8 andeπ ≈ 23.

Solution

1. Fort = 0, (y, y ′) = (1, 2)

2. Fort = π
2 , (y, y

′) = (eπ/2, 0) ≈ (4.8, 0)

3. Fort = π, (y, y ′) = (−eπ,−2eπ) ≈ (−23.1,−46.2)

Maybe we can see the path better by writing(y, y ′) = et(cos t, cos t)+ et(sin t, cos t).
The first term goes forward and back on the45 ◦ line. the second term circles around
and spirals out because ofet. So we have a big circle around a moving slider.

8 The rootss1 ands2 are±2i when the differential equation is . Starting from
y(0) = 1 andy ′(0) = 0, draw the path of(y(t), y ′(t)) around the center. Mark the
points whent = π/2, π, 3π/2, 2π. Does the path go clockwise ?

Solution The differential equation isy ′′ + 4y = 0. The solution starting at(y, y ′) =
(1, 0) is (y(t), y ′(t)) = (cos 2t,−2 sin 2t). This is an ellipse in the equation

y2 +
1

4
(y ′)2 = cos2 2t+ sin22t = 1.

The path is clockwise around that elliptical center.

9 The equationy ′′ + By ′ + y = 0 leads tos2 + Bs+ 1 = 0. ForB = −3, −2, −1, 0,
1, 2, 3 decide which of the six figures is involved. ForB = −2 and2, why do we not
have a perfect match with the source and sink figures ?

Solution To determine which figure is involved, we solve the quadraticequation:

s1 and s2 are
−B ±

√
B2 − 4

2

B = −3 hass1 = 3−
√
5

2 ≈ 0.38 and s2 = 3+
√
5

2 ≈ 2.6. Sourcewith 0 < s1 < s2

B = −2 hass1 = 1 and s2 = 1. Since 0 < s1 = s2 we have asource

B = −1 hass1 = 1+
√
3i

2 and s2 = 1+
√
3i

2 . Spiral Source (outward) Re(s1) = Re(s2) > 0

B = 0 hass1 = i and s2 = −i. Since 0 = Re(s1) = Re(s2) we have acenter

B = 1 hass1 = −1+
√
3i

2 and s2 = −1+
√
3i

2 . Spiral Sink (inward) Re(s1) = Re(s2) < 0

B = 2 hass1 = −1 and s2 = −1. Since s1 = s2 < 0 we have asink

B = 3 hass1 = −3−
√
5

2 ≈ −2.6 and s2 = −3+
√
5

2 ≈ −0.38. s1 < s2 < 0. This is asink

The special caseB = 2 andB = −2 gaveequal rootss1 = s2. Then there will be a
factor “t” in the null solution. The path won’t close on itself like a circle or ellipse. As
it turns, it will go slowly outward from that factort.
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10 For y ′′ + y ′ + Cy = 0 with dampingB = 1, the characteristic equation will be
s2 + s+ C = 0. WhichC gives the changeover from asink(overdamping) to a spiral
sink(underdamping)? Which figure hasC < 0?

Solution The solutions to the quadratic equations2 + s+ C = 0 are

s1 and s2 are
−1±

√
1− 4C

2

The change from a sink to a spiral sink occurs atC = 1
4 . Those are sinks because the

real part ofs is negative. WhenC is less than zero, we change to one positive root and
one negative root. Then the path becomes asaddle.

Problems 11–18 are aboutdy/dt = Ay with companion matrices
[

0 1
−C −B

]
.

11 The eigenvalue equation isλ2 + Bλ + C = 0. Which values ofB andC give com-
plex eigenvalues? Which values ofB andC giveλ1 = λ2 ?

Solution Look at the solution to the quadratic equationλ2 +Bλ+ C = 0 :

λ1 and λ2 =
−B ±

√
B2 − 4AC

2A
=

−B ±
√
B2 − 4C

2

Therefore whenB2 < 4C we get complex eigenvalues.

On the other hand, whenB2 = 4C we getλ1 = λ2 = −B/2 (the square root is0).
12 Findλ1 andλ2 if B = 8 andC = 7. Which eigenvalue is more important ast → ∞ ?

Is this a sink or a saddle?

Solution We solve the quadratic eigenvalue equation forλ1 andλ2 :

λ =
−B ±

√
B2 − 4AC

2A
=

−8±
√
64− 28

2
gives λ1 = −7 and λ2 = −1.

Sinces1 < s2 < 0 we have asink. The more negativeλ2 gives slower decay as
t → ∞.

13 Why do the eigenvalues haveλ1 + λ2 = −B ? Why isλ1λ2 = C ?

Solution This refers to the eigenvalues of the companion matrix :

A =

[
0 1

−C −B

]
comes from

y ′

1 = y2
y ′

2 = −Cy −By2
. Theny ′′

1 = y ′

2 is y ′′

1 + By ′

1 +

Cy1 = 0.

The eigenvaluesλ1 andλ2 are the roots ofλ2 + Bλ + C = 0 just as the rootss1 and
s2 are the roots ofs2 +Bs+C = 0. We know from factoring into(s− s1)(s− s2) or
(λ− λ1)(λ− λ2) that the coefficient ofλ2 is 1, the coefficient ofλ isB = −λ1 − λ2,
and the constant form isC = λ1 timesλ2.

14 Which second order equations did these matrices come from ?

A1 =

[
0 1
1 0

]
(saddle) A2 =

[
0 1

−1 0

]
(center)

Solution Write the matrix equationy ′ = Ay as two coupled first order equations. For
A we get
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y ′

1 = y2

y ′

2 = y1

Theny ′′

1 = y ′

2 = y1 and the second order equation isy ′′ = y.

The second matrixA2 givesy ′

1 = y2 andy ′

2 = −y1.

Theny ′′

1 = y ′

2 = −y1 and the second order equation isy ′′ + y = 0. (Notice that we
also findy ′′

2 = −y2.)

15 The equationy ′′ = 4y produces a saddle point at(0, 0). Find s1 > 0 ands2 < 0
in the solutiony = c1e

s1t + c2e
s2t. If c1c2 6= 0, this solution will be (large) (small) as

t → ∞ and also ast → −∞.

The only way to go toward the saddle(y, y ′) = (0, 0) ast → ∞ is c1 = 0.

Solution Assuming a solution of the formy(t) = est gives :

y ′′ − 4y = 0

s2est − 4est = 0

s2 − 4 = 0

s = ±2

Therefores1 = 2 ands2 = −2. The solution becomesy = c1e
2t + c2e

−2t. As
t → ∞, thee2t term will grow unlessc1 = 0. In that case(y, y ′) = (c2e

−2t,−2c2e
−2t)

goes to the saddle point(0, 0).

16 If B = 5 andC = 6 the eigenvalues areλ1 = 3 andλ2 = 2. The vectorsv = (1, 3)
andv = (1, 2) areeigenvectorsof the matrixA : Multiply Av to get3v and2v.

Solution v = (1, 3) is an eigenvector with eigenvalueλ1 = 3 :

Av =

[
0 1

−6 5

] [
1
3

]
=

[
3
9

]
= 3

[
1
3

]
= 3v.

Similarly v = (1, 2) is an eigenvector with eigenvalueλ2 = 2 :
[

0 1
−6 5

] [
1
2

]
=

[
2
4

]
= 2

[
1
2

]
.

Notice that these eigenvectors of the companion matrixA have the formv = (1, λ).

17 In Problem 16, write the two solutionsy = veλt to the equationsy ′ = Ay.
Write the complete solution as a combination of those two solutions.

Solution The eigenvectorsv1 = (1, 3) andv2 = (1, 2) give two pure exponential
solutionsy = veλt :

y1 =

[
e3t

3e3t

]
and y2 =

[
e2t

2e2t

]
.

The complete solution isy(t) = c1y1+c2y2. Two constants to match two components
of the initial vectory(0) at t = 0. Theny(0) = c1v1 + c2v2.
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18 The eigenvectors of a companion matrix have the formv = (1, λ). Multiply by A to
show thatAv = λv gives one trivial equation and the characteristic equationλ2+Bλ+
C = 0.

[
0 1

−C −B

] [
1
λ

]
= λ

[
1
λ

]
is

λ = λ
−C −Bλ = λ2

Find the eigenvalues and eigenvectors ofA =

[
3 1
1 3

]
.

Solution The eigenvectors of a companion matrix have the special formv = (1, λ), as
the problem statement shows—because−C − Bλ = λ2 from the eigenvalue equation
λ2 + Bλ+ C = 0.

The exampleA is not a companion matrix!

A =

[
3 1
1 3

]
has eigenvectorsv1 =

[
1
1

]
and v2 =

[
1

−1

]
with λ1 = 4 and λ2 = 2.

[
3 1
1 3

] [
1
1

]
= 4

[
1
1

] [
3 1
1 3

] [
1

−1

]
= 2

[
1

−1

]

The equation forλ isλ2−6λ+8 = 0 with 6 coming from the trace3+3 and8 coming
from the determinant9− 1.

19 An equation is stable and all its solutionsy = c1e
s1t + c2e

s2t go to y(∞) = 0
exactly when

(s1 < 0 or s2 < 0) (s1 < 0 and s2 < 0) (Re s1 < 0 and Re s2 < 0)?

Solution The correct answer is (Res1 < 0 and Res2 < 0).
20 If Ay ′′ +By ′ + Cy = D is stable, what isy(∞) ?

Solution The steady state solution to this equation is the constanty(∞) = D/C.
Because the equation is stable, the null solutionyn(t) will go to zero ast → ∞. The
rootss1 ands2 have negative real parts.

Problem Set 3.3, page 182

1 If y ′ = 2y + 3z + 4y2 + 5z2 andz ′ = 6z + 7yz, how do you know thatY = 0,
Z = 0 is a critical point ? What is the2 by 2 matrix A for linearization around
(0, 0) ? This steady state is certainly unstable because .

Solution Herey ′ = f(y, z) andz ′ = g(y, z) havef = g = 0 at the point(y, z) =
(0, 0). Then this point is a critical point (stationary point). TheJacobian matrix of
derivatives at that point(0, 0) is

[
∂f/∂y ∂f/∂z
∂g/∂y ∂g/∂z

]
=

[
2 + 8y 3 + 10z
7z 6 + 7y

]
=

[
2 3
0 6

]
at (y, z) = (0, 0).

The eigenvalues of this triangular matrix are2 and6 (on the diagonal). Any positive
eigenvalue means growth and instability.
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2 In Problem 1, change2y and 6z to −2y and−6z. What is now the matrixA for
linearization around(0, 0) ? How do you know this steady state is stable ?

Solution

A=

[
−2 + 8y 3 + 10z

7z −6 + 7y

]
=

[
−2 3
0 −6

]
now has eigenvaluesλ=−2,−6: stable.

3 The systemy ′ = f(y, z) = 1 − y2 − z, z ′ = g(y, z) = −5z has a critical point
at Y = 1, Z = 0. Find the matrixA of partial derivatives off andg at that point :
stable or unstable ?

Solution Heref = g = 0 when(Y, Z) = (1, 0).[
∂f/∂y ∂f/∂z
∂g/∂y ∂g/∂z

]
=

[
−2y −1

0 −5

]
=

[
−2 −1
0 −5

]
. Stable.

4 This linearization is wrong but the zero derivatives are correct. What is missing?
Y = 0, Z = 0 is not a critical point ofy ′ = cos (ay + bz), z ′ = cos (cy + dz).[

y ′

z ′

]
=

[
−a sin 0 −b sin 0
−c sin 0 −d sin 0

] [
y
z

]
=

[
0 0
0 0

] [
y
z

]
.

Solution At the point(Y, Z) = (0, 0), the functionsf = cos(0+0) andg = cos(0+0)
are equal to1. This is not a critical point.

5 Find the linearized matrixA at every critical point. Is that point stable ?

(a)
y ′ = 1− yz
z ′ = y − z3

(b)
y ′ = −y3 − z
z ′ = y + z3

Solution (a) f(y, z) = 1 − yz andg(y, z) = y − z3 are both zero wheny = z3 and
then1 − yz = 1 − z4 = 0. ThenZ = 1 goes withY = 1 andZ = −1 goes with
Y = −1 : two critical points .

A =

[
∂f/∂y ∂f/∂z
∂g/∂y ∂g/∂z

]
=

[
−z −y
1 −3z2

]
=

[
−1 −1
1 −3

]
OR

[
1 1
1 −3

]
.

The eigenvalues solvedet(A− λI) = 0.

At (1, 1) det

[
−1− λ −1

1 −3− λ

]
= λ2 + 4λ+ 4 = 0, λ = −2,−2

At (−1,−1) det

[
1− λ 1
1 −3− λ

]
= λ2 + 2λ− 4 = 0, λ = −1 ±

√
5

Then(Y, Z) = (1, 1) is stablebut (−1,−1) is unstable(because−1 +
√
5 > 0).

(b) f = −y3 − z andg = y + z3 are both zero at(Y, Z) = (0, 0) and(1,−1)
and(−1, 1) : three critical points becausef = 0 givesz = −y3 and theng = 0
givesy = ya, leading toy = 0, 1, or −1. The stability test applies to the matrix of
derivatives :

A =

[
−3y2 −1

1 3z2

]
has det(A− λI) = λ2 + λ(3y2 − 3z2) + 1− 9y2z2.

At (0, 0) λ2 + 1 = 0 andλ = ±i Unstable(neutrally stable)

At (1,−1) and (−1, 1) λ2 − 8 = 0 Unstablewith λ =
√
8.
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6 Can you create two equationsy ′ = f(y, z) andz ′ = g(y, z) with four critical points :
(1, 1) and(1,−1) and(−1, 1) and(−1,−1) ?

I don’t think all four points could be stable ? This would be like a surface with four
minimum points and no maximum.

Solution An example would bey ′ = y2 − z2 andz ′ = 1 − z2. Thenz2 − 1 = 0
andy2 − z2 = 0 have the four points(Y, Z) = (±1,±1) as critical points. In this case
the linearized matrix (Jacobian matrix) is

[
∂f/∂y ∂f/∂z
∂g/∂y ∂g/∂z

]
=

[
2y −2z
0 −2z

]
and only (Y, Z) = (−1, 1) is stable.

7 The second order nonlinear equation for a damped pendulum isy ′′ + y ′ + sin y = 0.
Write z for the damping termy ′, so the equation isz ′ + z + sin y = 0.

Show thatY = 0, Z = 0 is a stable critical point at the bottom of the pendulum.
Show thatY = π, Z = 0 is an unstable critical point at the top of the pendulum.

8 Those pendulum equationsy ′ = z andz ′ = − sin y − z have infinitely many critical
points ! What are two more and are they stable ?

Solutions to 7 and 8The systemy ′ = z andz ′ = −z − sin y has critical points when
z = 0 andsin y = 0 (this allows all valuesy = nπ).

The Jacobian matrix of derivatives ofz and−z − sin y is a companion matrix :

A =

[
0 1

− cos y −1

]
=

[
0 1

−1 −1

]
or

[
0 1
1 −1

]

We have− cos y = −1 aty = 0,±2π,±4π, . . . and− cos y = +1 aty = ±π,±3π, . . .

The eigenvalues satisfyλ2 + λ+ 1 = 0 or λ2 + λ− 1 = 0 :

λ = 1
2 (−1±

√
−3) = 1

2 (−1± i
√
−3) is stable aty = 2nπ.

λ = 1
2 (−1±

√
5) is unstable at y = (2n + 1)π.

The pendulum is stable hanging straight down (at 6:00) and unstable when balanced
directly upward (at 12:00).

9 The Líenard equationy ′′ + p(y)y ′ + q(y) = 0 gives the first order systemy ′ = z and
z ′ = . What are the equations for a critical point ? When is it stable ?

Solution The coupled equations arey ′ = z andz ′ = −p(y)z − q(y). These right
sides are zero (critical point) whenz = 0 andq(y) = 0.

The first derivative matrix is[
∂f/∂y ∂f/∂z
∂g/∂y ∂g/∂z

]
=

[
0 0

−p ′z − q ′ −p

]
=

[
0 1

−C −B

]
.

That companion matrix is stable (according to Section 3.1) whenB > 0 andC > 0.

10 Are these matrices stable or neutrally stable or unstable (source or saddle) ?

[
2 1
0 −3

] [
0 9

−1 0

] [
−1 2
−1 −1

] [
−1 −2
−1 −1

] [
0 9

−1 −1

]
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Solution The stability tests aretrace < 0 anddeterminant > 0. This is because
determinant= (λ1)(λ2) and trace= sum down the main diagonal= λ1 + λ2. Apply
these tests to find

stable, unstable(saddle withdet < 0), stable, unstable, stable.

The second matrix hasλ = ±3i which gives undamped oscillation and neutral stability.

11 Suppose a predatorx eats a preyy that eats a smaller preyz :

dx/dt = −x+ xy Find all critical pointsX,Y, Z
dy/dt = −xy + y + yz FindA at each critical point
dz/dt = −yz + 2z (9 partial derivatives)

Solution The right hand sides arex(1− y) andy(−x+ 1+ z) andz(−y+ z). These
are all zero atthree critical points (X,Y, Z) : (0, 0, 0) (0, 2,−1), (1, 1, 0)

(Follow the two possibilitiesX = 0 or Y = 1 needed forX(1− Y ) = 0.) The matrix
of first derivatives of those right hand sides is

[
1− y −x 0
−y −x+ 1 + z y
0 −z 2− y

]
. Substitute the three critical vectors(X,Y, Z) :

A =

[
1 0 0
0 1 0
0 0 2

] [ −1 0 0
−2 0 2
0 1 0

] [
0 −1 0

−1 0 1
0 0 1

]

12 The damping iny ′′+(y ′)3+y = 0 depends on the velocityy ′ = z. Thenz ′+z3+y =
0 completes the system. Damping makes this nonlinear system stable—is the linearized
system stable ?

Solution y ′ = z andz ′ = −y − z3 has only(Y, Z) = (0, 0) as critical point :

A = first derivative matrix=

[
0 1
−1 −3z2

]
has determinant= 1, trace= −3z2:

unstable.
13 Determine the stability of the critical points(0, 0) and(2, 1) :

(a)
y ′ = −y + 4z + yz
z ′ = −y − 2z + 2yz

(b)
y ′ = −y2 + 4z
z ′ = y − 2x4

Solution (a) The first derivative matrix at(y, z) = (0, 0) or (2, 1) is

A =

[
z − 1 4 + y
z − 1 2y − 2

]
=

[
−1 4
−1 −2

]
(stable)or

[
0 6
1 2

]
(unstable)
(trace 2)

(b) The first derivative matrix at(y, z) = (0, 0) or (2, 1) is (replace x by z)

A =

[
−2y 4
1 −8z3

]
=

[
0 4
1 0

]
(unstable)
(trace 0) or

[
−4 4
1 −8

]
(stable).
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Problems 14–17 are about Euler’s equations for a tumbling box.

14 The correct coefficients involve the moments of inertiaI1, I2, I3 around the axes.
The unknownsx, y, z give the angular momentum around the three principal axes :

dx/dt = ayz with a = (1/I3 − 1/I2)
dy/dt = bxz with b = (1/I1 − 1/I3)
dz/dt = cxy with c = (1/I2 − 1/I1).

Multiply those equations byx, y, z and add. This proves thatx2 + y2 + z2 is .

Solution Multiply by x, y, andz to get

xx ′ = axyz

yy ′ = bxyz

zz ′ = cxyz

1
2 (x

2 + y2 + z2) ′ = (a+ b+ c)xyz = 0 for the given a, b, c.x2I
I

Thenx2 + y2 + z2 = constantbecause its derivative is zero.
15 Find the 3 by 3 first derivative matrix from those three right hand sidesf , g, h.

What is the matrixA in the6 linearizations at the same6 critical points ?

Solution The first derivative matrix in Problem 14 is
[

∂f/∂x ∂f/∂y ∂f/∂z
∂g/∂x ∂g/∂y ∂g/∂z
∂h/∂x ∂h/∂y ∂h/∂z

]
=

[
0 az ay
bz 0 bx
cy cx 0

]
.

The 3 right sides are zero at the 6 critical points(±1, 0, 0), (0,±1, 0), (0, 0,±1).

[
0 0 0
0 0 ±b
0 ±c 0

]
,

[
0 0 ±a
0 0 0
±c 0 0

]
,

[
0 ±a 0
±b 0 0
0 0 0

]
.

All six points are neutrally stable (Reλ = 0).
16 You almost always catch an unstable tumbling book at a momentwhen it is flat.

That tells us : The pointx(t), y(t), z(t) spends most of its time (near) (far from)
the critical point(0, 1, 0). This brings the travel timet into the picture.

Solution This neat observation was explained to me by Alar Toomre. Thevelocity
(f, g, h) = (ayz, bxz, cxy) is low near a critical point wherex, y, z are small. Then
the book spends most timenear the point where the book is flat and easy to catch.

17 In reality what happens when you

(a) throw a baseball with no spin (a knuckleball) ?

(b) hit a tennis ball with overspin ?

(c) hit a golf ball left of center ?

(d) shoot a basketball with underspin (a free throw) ?

Solution (a) The knuckleball is unstable–hard for the batter to judge.

(b) The topspin brings the tennis ball down faster with a higher bounce.

(c) The golf ball slices to the right off the fairway.

(d) The basketball with underspin is more stable with less bounce around the rim.
It is more likely to end up in the basket.
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Problem Set 3.4, page 189

1 Apply Euler’s methodyn+1 = yn +∆tfn to findy1 andy2 with ∆t = 1
2 :

(a)y ′ = y (b) y ′ = y2 (c) y ′ = 2ty (all with y(0) = y0 = 1)

Solution (a) y1 = y0 + ∆t y0 = 1 + ∆t = 1.5 y2 = (1 + ∆t)2 = yn =
(1 +∆t)R = 2.25

(b) y1 = y0 +∆t y20 = 1+∆t = 1.5 y2 = y1 +∆ty21 = 1+∆t+∆t(1 + 2∆t+
∆t2) = (1 + ∆t)(1 + ∆t+∆t2) = (1.5)(1.75)

(c) y1 = (1 + 2t+ ∆t)y0 = 1 becauset = 0 y2 = (1 + 2t+ ∆t)y1 = 1.5 because
t = ∆t.

2 For the equations in Problem 3, findy1 andy2 with the step size reduced to∆t = 1
4 .

Now the value y2 is an approximation to the exacty(t) at what time t ?
Theny2 in this question corresponds to whichyn in Problem 3 ?

Solution With ∆t = 1
4 , y2 will now be an approximation to the true solutiony(12 )

because2∆t = 1
2 .

(a) y1 = 1 +∆t = 5/4 = 1.35 y2 = (1 +∆t)2 = 25/16

(b) y1 = 1 +∆t = 1.25 y2 =
(
1 + 1

4

) (
1 + 1

4 + 1
16

)
=
(
5
4

) (
21
16

)

(c) y1 = 1 y2 = (1 + 2t+∆t)y1 =
(
1 + 2

19

)
=
(
9
8

)

3 (a) Fordy/dt = y starting fromy0 = 1, what is Euler’syn when∆t = 1?

(b) Is it larger or smaller than the true solutiony = et at timet = n ?

(c) What is Euler’sy2n when∆t = 1
2 ? This is closer to the truey(n) = en.

Solution (a)yn+1 = (1 +∆t)yn = 2yn soyn = 2n

(b) 2n is smaller thanen

(c) yn+1=(1+∆t)yn=
3
2yn. Theny2n=

(
1+ 1

2

)2n
is above2n because

(
1+ 1

2

)2
> 2.

4 For dy/dt = −y starting fromy0 = 1, what is Euler’s approximationyn aftern steps
of size∆t ? Find all theyn’s when∆t = 1. Find all theyn’s when∆t = 2. Those
time steps aretoo largefor this equation.

Solution yn+1 = Yn −∆tyn soyn = (1−∆t)ny0.

If ∆t = 1 then all ofY1, Y2, Y3, . . . are zero.

If ∆t = 2 thenYn+1 = −yn andyn = (−1)n.

The approximation will blow up for∆t > 2.

In reality it seems useless for∆t > 0.1.

5 The true solution toy ′ = y2 starting fromy(0) = 1 is y(t) = 1/(1 − t). This
explodes att = 1. Take3 steps of Euler’s method with∆t = 1

3 and take4 steps
with ∆t = 1

4 . Are you seeing any sign of explosion?

Solution With ∆t = 1
3 , Euler’s method fory ′ = y2 becomesyn+1 = yn + ∆ty2n.

Three steps with∆t = 1
3 and four steps with∆t = 1

4 give
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y1 = 4
3 , y2 = 52

27 , y3 = __ y1 = 5
4 , y2 = 105

64 , y3 = __ y4 = __

We are not reaching infinity at timet = n∆t = 1 but as∆t → 0 andn = 1/∆t the
numbersyn will keep growing past any bound.

6 The true solution tody/dt = −2ty with y(0) = 1 is the bell-shaped curvey = e−t2 . It
decays quickly to zero. Show that stepn + 1 of Euler’s method gives
yn+1 = (1− 2n∆t2)yn. Do theyn’s decay toward zero ? Do they stay there ?

Solution A step of Euler’s method starting at timet = n∆t givesyn+1 = yn −
2(n∆t)yn. In the early steps we are multiplyingyn by 1 − 2n∆t which is normally
less than1. So theyn are decreasing at first. But whenn is larger than1/∆t, we are
multiplying by a number below−1. At that point theyn start growing and changing
sign at every step : seriousinstability.

7 The equationsy ′ = −y andz ′ = −10z are uncoupled. If we use Euler’s method for
both equations with the same∆t between 2

10 and2, show thatyn → 0 but |zn| → ∞.
The method is failing on the solutionz = e−10t that should decay fastest.

Solution The Euler formulas areyn+1 = (1−∆t)yn andzn+1 = (1− 10∆t)zn. For
time steps∆t between 2

10 and2, they factor has|1 − ∆t| < 1. But thez factor has
|1− 10∆t| > 1. The true solutions arey = Ce−t andz = Ce−10t.

But that quickly decreasingz has a quickly increasingzn when |1 − 10∆t| > 1 :
instability.

8 What valuesy1 and y2 come frombackward Eulerfor dy/dt = −y starting from
y0 = 1 ? Show thatyB1 < 1 andyB2 < 1 even if∆t is very large. We haveabsolute
stability: no limit on the size of∆t.

Solution Backward Euler fory ′ = −y is yn+1 − yn = −∆tyn+1 (not −∆tyn).
Thenyn+1 = yn/(1 +∆t). For any At that factor1/(1 +∆t) is less than1 : absolute
stability.

9 The logistic equationy ′ = y−y2 has anS-curve solution in Section 1.7 that approaches
y(∞) = 1. This is a steady state becausey ′ = 0 wheny = 1.

Write Euler’s approximationyn+1 = to this logistic equation, with stepsize
∆t. Show that this has the same steady state :yn+1 equalsyn if yn = 1.

Solution y ′ = y−y2 is approximated byyn+1 = yn+∆t(yn−y2n). This equation has
a steady state whenyn+1 = yn—and this requires the∆t factor to be zero :yn − y2

n =
0. So the two steady states are (yn = 1 forever) and (yn = 0 forever).

10 The important question in Problem 3 is whether the steady state yn = 1 is stable
or unstable. Subtract1 from both sides of Euler’syn+1 = yn +∆t(yn − y2n) :

yn+1 − 1 = yn +∆t(yn − y2n)− 1 = (yn − 1)(1−∆tyn).

Each step multiplies the distance from1 by (1 − ∆tyn). Near the steadyy∞ = 1,
1−∆t yn has size|1−∆t|. For which∆t is this smaller than1 to give stability ?

Solution yn − 1 is the distance from steady state. The equation in the problem shows
that this distance is multiplied at each step by a factor1 − ∆tyn. This factor has
|1 − ∆tyn| < 1 when0 < ∆tyn < 2. Whenyn is near1, this means∆t can be
almost2 for stability.
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11 Apply backward EuleryBn+1 = yn+∆tfB
n+1 = yn+∆t

[
yBn+1 −

(
yBn+1

)2]
to the logis-

tic equationy ′ = f(y) = y − y2. What is yB1 if y0 = 1
2 and ∆t = 1

4 ?
You have to solve a quadratic equation to findyB1 . I am finding two answers foryB1 .
A computer code might choose the answer closer toy0.

Solution At each new time step, Backward Euler becomes a quadratic equation for
yn+1 in the logistic equation. Ify0 = 1

2 and∆t = 1
4 the equation fory1(= yB1 ) is

∆t(y1)
2 + (1−∆t)y1 − y0 = 0 OR

1

4
y21 +

3

4
y1 −

1

2
= 0.

Multiply by 4. The solutions ofy21 + 3y1 − 2 = 0 are

y1 =
−3±

√
17

2
. The better choice

(
near

1

2

)
is yB1 =

−3 +
√
17

2
.

12 For the bell-shaped curve equationy ′ = −2ty, show that backward Euler divides
yn by 1 + 2n(∆t)2 to find yBn+1. As n → ∞, what is the main difference from
forward Euler in Problem 3 ?

Solution Backward Euler fory ′ = −2ty is yn+1 − yn = −2t∆tyn+1 or yn+1 =
yn/(1 + 2t+∆t).

That fraction is smaller than1 for all t and∆t. Then the numbersyn are steadily
decreasing asn → ∞, like the true solutiony(t) = e−t2 . (Forward Euler was hopeless
in Problem 6, withYn increasing and changing sign at every step beyondn = 1/∆t.)

13 The equationy ′ =
√
|y| hasmany solutionsstarting fromy(0) = 0. One solution

stays aty(t) = 0, another solution isy = t2/4. (Theny ′ = t/2 agrees with
√
y.)

Other solutions can stay aty = 0 up to t = T , and then switch to the parabola
y = (t − T )2/4. As soon asy leaves the bad pointy = 0, wheref(y) = y1/2

has infinite slope, the equation has only one solution.

Backward Eulery1 − ∆t
√
|y1| = y0 = 0 gives two correct valuesyB1 = 0 and

yB1 = (∆t)2. What are the three possible values ofyB2 ?

Solution Backward Euler foryB2 will be y2 − ∆t
√
|y2| = Y1. If yB1 = 0 thenyB2

can be0 or (∆t)2. If yB1 = (∆t)2 thenx =
√
|yB2 | solvesx2 − ∆tx − (∆t)2 = 0.

Again two possibilities :

x =
1

2

(
1±

√
5
)
∆t.

Because
√
|y| is continuous but its derivative blows up aty = 0, multiple solutions are

possible.
14 Every finite difference person will think of averaging forward and backward Euler :

Centered Euler/Trapezoidal yC
n+1 − yn = ∆t

(
1

2
fn +

1

2
fC
n+1

)
.

Fory ′ = −y the key questions areaccuracyandstability . Start withy(0) = 1.

yC1 − y0 = ∆t

(
− 1

2
y0 −

1

2
yC1

)
gives yC

1 =
1 − ∆t/2

1 + ∆t/2
y0.

Stability Show that|1−∆t/2| < |1 + ∆t/2| for all ∆t. No stability limit on∆t.
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Accuracy For y0 = 1 compare the exacty1 = e−∆t = 1 − ∆t + 1
2∆t2 − · · ·

with yC1 = (1− 1
2∆t)/(1 − 1

2∆t) = (1− 1
2∆t)(1 − 1

2∆t+ 1
4∆t2 − · · · ).

An extra power of∆t is correct :Second order accuracy. A good method.

Solution Stability is |yn+1| ≤ |yn| for an equation likey ′ = −y where the true
solutiony = e−t is decreasing. In this problem

yC1 =
1−∆t/2

1 + ∆t/2
y0 has growth factor

∣∣∣∣
1−∆t/2

1 + ∆t/2

∣∣∣∣ < 1 because

∣∣∣∣1 +
∆t

2

∣∣∣∣ >
∣∣∣∣1−

∆t

2

∣∣∣∣

Accuracy is decided by comparingyC1 to the exacty1. The two series agree in the terms
1 and−∆t and 1

2 (∆t)2 : Second order accuracybecause the(∆t)3 error appears in
1/∆t time steps to reach the typical timet = 1. Sign correction in text to :

yC1 =

(
1−1

2
∆t

)
/

(
1+

1

2
∆t

)
= · · ·

The rest is correct and produces1−∆t+ 1
2 (∆t)2 . . . as required.

The website has codes for Euler and Backward Euler and Centered Euler. Those
methods are slow and steady with first order and second order accuracy. The test problems
give comparisons with faster methods like Runge-Kutta.

Problem Set 3.5, page 194

Runge-Kutta can only be appreciated by using it. A simple code is on math.mit.edu/dela.
Professional codes are ode 45 (inMATLAB) and ODEPACK and many more.

1 For y ′ = y with y(0) = 1, show that simplified Runge-Kutta and full Runge-Kutta
give these approximationsy1 to the exacty(∆t) = e∆t :

yS1 = 1 +∆t+
1

2
(∆t)2 yRK

1 = 1 +∆t+
1

2
(∆t)2 +

1

6
(∆t)3 +

1

24
(∆t)4

Solution Simplified Runge-Kutta (equation (1) in this section) wheny ′=f(t, y)=y :

yn+1 = yn +∆t

[
1

2
f(tn, yn) +

1

2
f
(
tn+1, y

Euler
n+1

)]

= yn +∆t

[
1

2
yn +

1

2
(yn +∆tyn)

]

= yn +∆tyn +
1

2
(∆t2)yn (3 good terms ofe∆tyn)

Full Runge-Kutta is in equation (5)—now applied whenf(t, y) = y :

k1 =
1

2
yn k3 =

1

2

(
yn +

∆t

2

(
yn +

∆t

2
yn

))

k2 =
1

2

(
yn +

∆t

2
yn

)
k4 =

1

2

(
yn +∆t

(
yn +

∆t

2

(
yn +

∆t

2
yn

)))



96 Chapter 3. Graphical and Numerical Methods

Then the Runge-Kutta choice foryn+1 is correct through(∆t)4 !

yn +
∆t

3
(k1 + 2k2 + 2k3 + k4) = yn

[
1 +

∆t

6
+

∆t

3

(
1 +

∆t

2

)
+

∆t

3

(
1 +

∆t

2

(
1 +

∆t

2

))
+

∆t

6

(
1 + ∆t+

(∆t)2

2

(
1 +

∆t

2

))]

= yn

[
1 + ∆t+

1

2
(∆t)2 +

1

6
(∆t)3 +

1

24
(∆t)4

]
.

2 With ∆t = 0.1 compute those numbersyS1 andyRK
1 and subtract from the exacty =

e∆t. The errors should be close to(∆t)3/6 and(∆t)5/120.

Solution Wheny0 = 1 and∆t = 1
10 , the first step in the solution above gives

Simplified Runge-Kutta1 + 1
10 + 1

2

(
1
10

)2
= 1.105.

Runge-Kutta1 + 1
10 + 1

2

(
1
10

)2
+ 1

6

(
1
10

)3
+ 1

24

(
1
10

)4
= 11

10 + 1
200 + 1

6000 + 1
240000 =

1.1051708.

The exact growth factor isexp
(

1
10

)
= 1.1051709. Error10−7 is near10−5/120.

3 Those valuesyS1 andyRK
1 have errors of order(∆t)3 and(∆t)5. Errors of this size at

every time step will produce total errors of size and at timeT , fromN
steps of size∆t = T/n.

Those estimates of total error are correct provided errors don’t grow (stability).

Solution Local errors of size(∆t)3 or (∆t)5 produce global errors of size(∆t)2 or
(∆t)4 after1/∆t—provided the system is stable and local errors don’t grow.

4 dy/dt = f(t) with y(0) = 0 is solved by integration whenf does not involvey.
From timet = 0 to ∆t, simplified Runge-Kutta approximates the integral off(t) :

yS1 = ∆t

(
1

2
f(0) +

1

2
f(∆t)

)
is close to y(∆t) =

∆t∫

0

f(t)dt

f(0)
f(∆t)

0 ∆t

Suppose the graph off(t) is a straight line as shown. Then the region is atrapezoid.
Check that its area is exactlyyS1 . Second order means exact for linearf .

Solution The area of a trapezoid is(base)(average height) = (∆t)(f(0)+f(∆t))/2.
This is exactly the answer chosen by simplified Runge-Kutta.

5 Suppose again thatf does not involvey, sody/dt = f(t) with y(0) = 0. Then full
Runge-Kutta fromt = 0 to∆t approximates the integral off(t) by yRK

1 :

yRK
1 = ∆t (c1f(0) + c2f(∆t/2) + c3f(∆t)) . Find c1, c2, c3.

This approximation to
∆t∫
0

f(t) dt is called Simpson’s Rule. It has4th order accuracy.

Solution Full Runge-Kutta allows the top edge of the trapezoid to becurved: it is the
graph of a nonlinearf(t). The area under this curve is well approximated by Simpson’s
Rule :
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area ≈ ∆t

[
1

6
f(0) +

4

6
f

(
∆t

2

)
+

1

6
f(∆t)

]
.

If you apply Runge-Kutta toy ′ = f(t) from 0 to∆t, with the right hand side indepen-
dent ofy, the result is

k1 =
1

2
f(0) k2 =

1

2
f

(
∆t

2

)
k3 =

1

2
f

(
∆t

2

)
k4 =

1

2
f (∆t)

∆t

3
(k1+2k2+2k3+k4) =

∆t

6
f(0)+

4∆t

6
f

(
∆t

2

)
+

∆t

6
f (∆t) : Simpson’s Rule

6 Reduce these second order equations to first order systemsy ′ = f(t, y) for the vector
y = (y, y ′). Write the two components ofyE

1 (Euler) andyS
1 .

(a)y ′′ + yy ′ + y4 = 1 (b)my ′′ + by ′ + ky = cos t

Solutions to Problems 6 and 7Write z for y ′. The first order systems are

(a) y ′ = z (b) y ′ = z

z ′ = 1− yz − y4 mz ′ = −ky − bz + cos t

Then Euler’s method gives(yE1 , z
E
1 ) from (y0, z0) :

[
yE1

zE1

]
=

[
y0

z0

]
+∆t

[
z0

1− y0z0 − (z0)
4

]

[
yE1

mzE1

]
=

[
y0

mz0

]
+∆t

[
z0

−ky0 − bz0 + cos 0

]

Simplified Runge-Kutta finds(yS1 , z
S
1 ) from (y0, z0) by addinghalf of those Euler

correctionsplus half of the updated correction :

(a)

[
yS1

zS1

]
=

[
y0

z0

]
+

∆t

2

[
z0

1− y0z0 − (z0)
4

]
+

∆t

2

[
zE1

1− yE1 z
E
1 − (zE1 )

4

]

(b)

[
yS1

mzS1

]
=

[
y0

z0

]
+

∆t

2

[
z0

−ky0 . . .

]
+

∆t

2

[
zE1

−kyE1 − bzE1 + cos∆t

]

8 For y ′ = −y andy0 = 1 the exact solutiony = e−t is approximated at time∆t by 2
or 3 or 5 terms :

yE1 = 1−∆t yS1 = 1−∆t+
1

2
(∆t)2 yRK

1 = 1−∆t+
1

2
(∆t)2− 1

6
(∆t)3+

1

24
(∆t)4

(a) With∆t = 1 compare those three numbers to the exacte−1. What errorE ?

(b) With∆t = 1/2 compare those three numbers toe−1/2. Is the error nearE/16?

Solution (a)∆t = 1 givesyE1 = 0 yS1 = 1
2

yRK
1 = 9

24
= .375 compared to the

exacte−1 = .368 ERK = .007.
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(b)∆t = 1
2 givesyE1 = 1

2
yS1 = 5

8
yRK
1 = 233

(24)(16)
= .60677 e−1/2 = .60653

ERK = .00024.

Two steps with∆t = 1
2 would leave an error about2(.00024) = −.00048 which is

close to.007/16.

9 For y ′ = ay, simplified Runge-Kutta givesySn+1 = (1 + a∆t + 1
2 (a∆t)2)yn.

This multiplier ofyn reaches1− 2 + 2 = 1 whena∆t = −2 : the stability limit.

(Computer experiment) ForN = 1, 2, . . . , 10 discover the stability limitL = LN

when the series fore−L is cut off afterN + 1 terms :
∣∣∣∣1− L+

1

2
L2 − 1

6
L3 + · · · ± 1

N !
LN

∣∣∣∣ = 1.

We knowL = 2 for N = 1 andN = 2. Runge-Kutta hasL = 2.78 for N = 4.

Solution The stability limits LN for N = 1, . . ., 10 come from MATLAB:

2.0 2.0 2.513 2.785 3.217 3.55 3.954 4.314 4.701 5.070.


