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Complete Solutions to Exercise 3.4

1. We use the Chines Remainder Theorem to solve the given system of equations.

First we check that the given moduli are pairwise prime.

(a) To solve the given system z =5 (mod 7), r=4 (mod 11) we use the

following formula:

(3.23) t=aNz +aNgz +aNz, + - +aNz
Provided the ged of 7 and 11 is 1 which it is.
Firstly what is r equal to in this case?
Because we are given 2 simultaneous equations so » =2 and our solution is given
by

x:(allexx1)+<a2xN2xx2) (1)

We need to find each of these components — a’s, N’s and «’s.
Evaluating the N’s:

N_”1X”227X11:

= 11
1 n, 7

Similarly N, =7.
We also need to solve Nz, =1 (mod nk) for # where k =1 and 2:
Nz =11z, =1 (mod 7)
We have 11 =4 (mod 7) so using this in the above equation gives
z, =4z, =1 (mod 7) implies 7, = 2.
Similarly we find z,:
N, =71, = -4z, =1 (mod 11) implies z, = -3 =8 (mod 11) so z, = 8.

So far we have the N’s and z’s of (T). What else do we need to find?
a’s. These are given to us - a, = 5 and a, = 4 because we are asked to solve

r=5 (mod 7), r=4 (mod 11)
Substituting a, =5, a,=4, N, =11, N, =7, r, =2 and z, = 8 into (}) gives

a::(al ><N1><a:1)+(a2 XN, ><332)

= (5x11x2)+(4x7x8) =334

Hence our solution is = 334 = 26 (mod 77) .
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(b) The procedure for solving z = 0 (mod 5), r=0 (mod 6) is very similar to part
(a).
First ged (5, 6) =1 so we can use the Chinese Remainder Theorem.
We are given two simultaneous equations so the solution z is given by

xz(allexxl)—i—(anNQxe) ()
Since we are given xz =0 (mod 5), r=0 (mod 6) so a, = a, = 0. We don’t need
to work out the rest of the values because z = (0)]\71901 + (0)N2x2 =0. Our
solution is

x:OEO(mOd [6><5D50(m0d 30)

This means z is a multiple of 30.
Remember z =0 (mod 5), z=0 (mod 6) means that when z is divided by 5 and

6, there is no remainder. Clearly 30, 60, 90 ... all satisfy both these congruences.
(c) We need to solve z =3 (mod 8), r=5 (mod 13) . First we check that 8 and
13 are pairwise prime:
gcd(S, 13) —1
Using formula (3.23) with r = 2 because we are given two simultaneous equations:
x:(allexx1)+<a2xN2xx2) (**)
We have a, =3, o, =5 because we are given z =3 (mod 8), rT=5H (mod 13).
Also
N, =13 and N, =8
We need to find the inverses of 13 (mod 8) and 8 (mod 13). Let z; be the inverse
of 13 (mod 8) SO
Nz =13z, =bz =1 (mod 8) gives T, = 5.
Similarly let z, be the inverse of 8 (mod 13) SO
Nz, =8z, =1 (mod 13) implies z, = 5.
Substituting a, =3, o, =5, N, =13, N, =8, z, =5 and z, = 5 into (**) gives
x:(al X N, x:vl)—l—(aQ X N, ><ac2)
=(3x13x5)+(5x8x5) =395
Our solution is z = 395 = 83 (mod 104).
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(d) We need to solve z =1 (mod 3), r =2 (mod 5), r =3 (mod 7).
Checking that the given moduli are pairwise prime:

gcd(3, 5) = gcd(3, 7) — gcd (5, 7) —1
Using formula (3.23)

(3.23) t=aNz +aNgz +aNz, + - +aNz
with r = 3 gives
:1::(allexxl)—k(aQ><N2><x2)+<a3><N3><x3) ()
We need to find all the components on the right - hand side. First we find the N’s;
N, =5x7=235
N,=3x7=21
N,=3x5=15

In order to find z,, 2, and =z, we need to solve the equations

2
Nz =1 (mod nk).
What is n, equal to?

These lower case n’s represent the given moduli, so

n, =3 n,=5 and n, =7
Solving each of these equations N, z, =1 (mod nk> for k=1, 2 and 3:

Nz =35z, =2z =1 (mod 3) implies =z, = 2

Ny, =21z, =z, =1 (mod 5) implies z, =1

2

N3x3 = 15x3 =z

, =1 (mod 7) implies z, =1
The a’s are given by a =1, a, = 2 and a, = 3 because we are given
=1 (mod 3), r =2 (mod 5), r =3 (mod 7)

Substituting e, =1, ¢, =2, a, =3, N =35, N, =21, N, =15, 2, =2, 2, =1
and z, =1 into (*) gives

:1::((11 X N, ><:z:1>+(oz2 X N, ><3;2>+(a3 XN, ><:173>

= (1x35x2)+(2x21x 1) + (3x 15 x1) = 157
Our unique solution in modulo n, xn, xn, = 3x5x7 =105 is
z =157 = 52 (mod 105)

(e) We are given the simultaneous congruences:

r=1 (mod 5), =3 (mod 7), T=D5H (mod 11)
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Checking that the given moduli are pairwise prime we have
gcd(5, 7) - gcd(5, 11) - gcd(7, 11) —1
We can use formula (3.23):
(3.23) r=aNz +aNz, +aNz, + - +aNzx
With r = 3 gives
xz(allexxl>+(a2><N2><a:2>+(a3><N3><x3> (1)
Evaluating N’s gives
N =7x11=77, N,=5x11=55 and N, =5x7 = 35

Solving the following equations

TTr, =2z, El(mod5> = z =3

55z, E—x251(m0d7) = z,=6

353, = 2z, =1(mod 11) = =, =6
What are the values of the a’s?
Since we are given z =1 (mod 5), r=3 (mod 7), T=DH (mod 11) so the a’s are

the integers:
a, =1 a,=3 and a, =5
Substituting e, =1, a,=3, a, =5, N =77, N,=55, N, =35, 2z, =3, 2,=6
and 2, = 6 into (f) yields
a::(al><N1><:z:1>—|—(a2><N2><332>+(a3><N3><:c3)
= (1x77x3) + (3% 55 6) + (5x 35 x 6) = 2271

Our unique solution is given in modular arithmetic with a modulo which is the

product of all the given moduli:

n=5x7x11=385
Hence z = 2271 = 346 (mod 385) .

. In each of these cases apart from (d) we need to convert to x =7 (mod n) because
we are given congruences of the form ax = b (mod n) where a > 1.

(a) We are given the system 2z =1 (mod 3), br =2 (mod 7). Verifying that
ged (3, 7) =1 so the given moduli are pairwise prime.

Solving each of these separately gives
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2x£1(m0d3) = a:EQ(modB)
5x52(m0d7) = xE6(mod7)
We solve the equivalent system of equations
r=2 (mod 3), xz6(mod 7)
by applying the Chinese Remainder Theorem.
The formula in this case is
x:(allexxl)+<a2xN2xx2) (%)
What is N, and N, equal to?
N =7and N, =3
To find #, and =z, we need to solve
Nz =T, =2 =1 (mod 3) which gives z, = 1.
Ny, =31, =1 (mod 7) which gives 1, = 5.
How do we find the a’s?

Since we are solving z = 2 (mod 3), r=6 (mod 7) SO a, =2, a,
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Substituting a, =2, o, =6, N, =7, N,=3, 2 =1 and z, =5 into (**) yields

r=aNz +aN,z,
=(2x7x1)+(6x3x5) =104
Our unique solution modulo nn, =3x7 =21 is

z =104 = 20 (modzl)

The general solution is given by x = 21f + 20 where ¢ is an integer.

The least non-negative integer in © = 21 +20 is when ¢t = 0 so z = 20.

(b) We are required to solve 2z =1 (mod 13), 3x =2 (mod 19) . First we need to

convert these into z =7 (mod n) Solving each of these equations separately

2z =1 (mod 13) implies that z =7 (mod 13)
3r =2 (mod 19) implies that z =7 (mod 19)
We solve the equivalent system

r=7 (mod 13), r=7 (mod 19)

We have ged (13, 19) =1 so the given moduli 13 and 19 are relatively prime.

Using formula:

(3.23) r=aNz +aNaz +aNz, + - +aNz
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with r =2 gives

x:(allexx1)+<a2xN2xx2) (1)
First finding the N’s:
N = 13x19 —19, N, = 13x19 _13
13 19

How do we determine z, and x,?
Need to solve Nz, =1 (mod n1> and Nz, =1 (mod n2) where n =13, n, = 19:
19z, =6z, =1 (mod 13) gives r, =11
13z, = -6z, =1 (mod 19) gives x, = 3
The a’s are given by a, = a, = 7 because we are solving
r=7 (mod 13), r=7 (mod 19).
Substituting a, =a, =7, N, =19, N, =13, z, =11 and z, = 3 into () yields
r=aNz +a,N,z,
= (7x19x11)+(7 x 13 x 3) = 1736
Writing this number z congruent to modulo n, xn, =13 x19 = 247:
7 =1736 = 7 (mod 247)

The least non-negative integer which satisfies the given system is 7.
The general solution is given by x =7 4 247t.

(c) We need to solve the system:

3r=5 (mod 7), 5z =2 (mod 11), 9z =1 (mod 5).
Firstly we can simplify the last congruence because 9 =4 (mod 5) so this

congruence is equivalent to 4z =1 (mod 5) .
Next we solve each of these equations:
3xES(mod7) = x54(m0d7)
by =2 (mod 11) = =7 (mod 11)
4x51(mod5> = xE4(mod5)
We solve the equivalent system:
r=4 (mod 7), r=7 (mod 11), r=4 (mod 5)

In order to use the Chinese Remainder Theorem we have to check that the given

moduli are pairwise prime:

gcd(5, 7):gcd(5, 11):gcd(7, 11):1
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Now we can use the Chinese Remainder formula:
:1::(al><N1X:vl)+(a2xN2Xm2)+<a3xN3Xx3) (**)
Evaluating N, N, and N,:

N :7‘><11><5:55
7

N, :7><11><5:35
11

N :7><11><,7§:77

’ B
Solving the equations Nz, =1 (mod nk):
55, = -z, =1 (mod 7) implies that z, = 6
35z, =2z, =1 (mod 11) implies that z, = 6
T, =2r, =1 (mod 5) implies that z, = 3
What are the a’s equal to?
We are solving z =4 (mod 7), =T (mod 11), r=4 (mod 5) SO
a =4, a

1

Substituting e, =4, a, =7, a, =4, N, =55, N, =35, N, =77, 1, =6, 2, =6

, =1, a, =4
and z, = 3 into (**) yields
a::(al XN, ><s(:1>+(a2 XN, ><332)+(a3 XN, ><:173>
= (4x55%6) +(7x35x6) + (4 x 77 x 3) = 3714
We write this congruent to modulo n,n,n, =7 x11x5 = 385 therefore we have
7 = 3714 = 249(mod 385)
The general solution is given by z = 249 + 385¢ and least non-negative integer is

249.
(d) Since 7 and 11 are relatively prime so we can use the Chinese Remainder
Theorem with r =2:
x:(allexxl)+<a2xN2xe) (1)

We have N =11 and N, = 7. The inverse of N, =11 and N, =7 modulo 7 and
9 respectively is given by z, and x, such that

Hz, =1 = 42, =1(mod 7} = 2 =2

r,=1 = —45,=1 = z,=-3(mod11) = z,=8§

Substituting ¢, =3, a, =9, N, =11, N, =7, 2, =2 and z, = 8 into () gives
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a::(al ><N1><a:1)+(a2 XN, ><332)
= (3x11x2)+(9x7x8) =570
Our unique solution is given by x = 570 = 31(m0d 77). Our general solution is

x =314 77t where tis any integer and the least positive integer is 31.

3. Let z be the least positive integer which leaves remainder 2 when divided by 7,
remainder 3 when divided by 9 and remainder 6 when divided by 11. We can write

this in modular arithmetic as:
x52(m0d7), xEB(mod9), xEG(mOdll)
The given moduli 7, 9 and 11 are pairwise prime so we can use the Chinese

Remainder Theorem:

(3.23) t=aNz +aNz +aNz, ++aNz
Since we have 3 simultaneous equations so in the formula r = 3:
xz(allexxl>+(a2><N2><a:2>+(a3><N3><x3> (1)
Using the procedure in all the above solutions we have
x9x11
N = 7T =99
11
N, = XA,

’ g
N, = _7><;/><ﬂ — 63
The z,, z, and z, satisfy
9z, =z =1 (mod 7) gives z, =1
TTx, =51, =1 (mod 9) gives 1, = 2
63z, = —3r, =1 (mod 11) gives 1, =7
Since we need to solve x =2 (mod 7) , T=3 (mod 9) , T=6 (mod 11) SO
a, =2, a,=3, a, =6
Putting all these numbers a, =2, a, =3, a, =6, N, =99, N, =77, N, =63,
z, =1, z,=2 and z, =7 into (}) gives
x:(al ><N1><:151)—|—<a2 X N, Xx2)+(a3 ><N3><x3)
= (2x99x 1)+ (377 x2) + (6 x 63 x 7) = 3306

We need to write z in modulo n, Xmn,Xn, = Tx9x11 =693:
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z = 3306 = 534 (mod 693)

The least positive integer which satisfies the remainders given in the question is
534.

. The least positive integer x which leaves remainder 1 when divided by 5,
remainder 2 when divided by 7, remainder 3 when divided by 9 and remainder 4

when divided by 11 satisfies the following congruent equations:
le(modf)), xE?(mod7), xE?)(mon), x54(m0d11)
We need to find the integer x which satisfies all these equations. Checking the
given moduli are pairwise prime:
gcd(5, 7) = gcd(5, 9) = gcd(5, 11) = gcd(?, 9) = gcd(?, 11) = gcd(Q, 11) =1
Hence the given moduli are pairwise prime so we can apply the Chinese

Remainder Theorem. We use

(3.23) ¢ =aNzx +aNz, +aNz, +-+aNz
Since we have 4 simultaneous equations so in the formula r = 4:
x = (al lexx1)+(a2xN2Xm2)+(a3 ><N3><:1:3)—i—<a4 ><N4><x4) (1)

Evaluating various components of this (f1):
N - ,5’><7/>;9><11 _ 693
- B
N = 5><7>jg/9’><11 _ as5
N = 5><7><9><ﬂ _ 315

4 A
We need to solve the equations N, z, =1 (mod nk> for k=1, 2, 3, 4. The lower
case n’s are the given moduli, that is n, =5, n, =7, n, =9 and n, =11. We
have
6937, = 3z, =1 (mod 5) gives z, = 2
4957, = 51, =1 (mod 7) gives x, = 3
385z, =Tr, =1 (mod 9) gives z, =4

3lbz, =Tz, =1 (mod 11) gives z, =8
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The last ingredients we need for (11) are the a’s. These are the right hand values

of the above congruences:

Because we are solving the following system of equations
le(modf)), xE?(mod7), xE?)(mon), x54(m0d11)
Substituting e, =1, a, =2, a, =3, a, =4, N, =693, N, =495, N, = 385,
N,=315,2 =2, 2,=3, z, =4 and z, =8 into (ff) yields
x:(allexxl)—l—(aQ><N2xx2)+(a3xN3xx:3)+(a4xN4xx4)
= (1% 693 x2) + (2 x 495 x 3) + (3 385 x 4) + (4 x 315 x 8) = 19056
We need to evaluate z modulo n, xn, xn, xn, =5x7x9x11 = 3465:

£ = 19056 = 1731 (mod 3465)

The least positive integer is 1731.

. We need to show the given linear system
r=1 (mod 2) and r =2 (mod 4)
cannot be solved. From the first equation x =1 (mod 2) we have z —1 =2k for

some integer k. Therefore x =1+ 2k. Similarly for the second equation we have

x =2+ 4c for some integer c. Equating these equations gives
r=14+2k=2+44c

Re-arranging this we have

2k —4c =1
This is a Diophantine equation. By Proposition (1.17):

Let ged (a, b) = ¢g. The equation ax + by = ¢ has integer solutions < ¢ ‘ c.

We can say that 2k — 4¢ = 1 has no solutions because gcd (2, —4) =2 and 2 J/l.

Note that the given moduli 2 and 4 are not pairwise prime we cannot use Chinese

Remainder Theorem.

. We can write the given information in modular arithmetic. Let 2 be the number of

soldiers. Then we have

2 left over when in rows of 5 = =2 (mod 5)

4 left over when in rows of 6 = r=14 (mod 6)



Complete Solutions 3.4 Page 11 of 18

1 left over when in rows of 7 = r=1 (mod 7)
7 left over when in rows of 11 =- r=7 (mod 11)
We solve this z =2 (mod 5), r=4 (mod 6), r=1 (mod 7), =7 (mod 11) by

using the formula
t=aNz +aNz, +aNz +aNz, (*)
Provided the moduli 5, 6, 7 and 11 are pairwise prime. Check that these are

actually pairwise prime.

We have
N1:5X6X7X11:462
B
N2:5X627X11:385
]\[3:5><6>;,7><11:330
_5><6><7></14:210

N, = }d/
The =z, ’s satisfy Nz, =1 (mod nk) for k=1, 2, 3, 4. Lower case n’s are the

values of the given moduli

Solving Nz, =1 (mod nk> for each k:

462z, =2z, =1 (mod 5) implies z, = 3
)
)

210z, =2, =1 (mod 11) implies 7, =1

385z, (mod 6) implies z, =1

330z, = (mod 7) implies z, =1

The a’s are a, =2, a, =4, a, =1, a, =7 because we are solving
xz2(m0d5),xz4(mod6),xEl(mod?),xz?(modll)
Substituting e, =2, a, =4, a, =1, a, =7, N =462, N, =385, N, = 330,
N,=210,2 =3, 2,=1, z, =1 and z, =1 into (*) gives
r=aNz +aNyz, +aNzx +aNzw

27272

_(2><462><3)+(4><385><1)+(1><330><1)+(7><210><1):6112

Evaluating x modulo n xn, xn, xn, =5x6x7x11=2310:
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r=6112 = 1492(mod 2310)

The minimum number of soldiers in his battalion is 1492.

7. We do not have z =7 (mod m) but az =7 (mod m) How do we solve
these?

We convert them into z =7 (mod m) by multiplying by an appropriate factor.
Multiply the first linear congruence 2x =1 (mod 5) by 3:
6r =z=3 (mod 5) [Because 6=1 (mod 5)}
We can simplify the second 3z =9 (mod 6) by dividing through by
ged (3, 6) =3:
T E3(m0d 2) El(mod 2)
We multiply the third 4z =1 (mod 7) by 2:

8z r =2 (mod 7)

i

Because 8=1 (mod 7)

Finally we multiply the last given congruence 5z =9 (mod 11) by 9:

45x r=81=4 (mod 11)

all

Becanse 451 (mod 11)
This last congruence is z = 4 (mod 11).
We solve the equivalent system:
r=3 (mod 5), r=1 (mod 2), z E2(m0d 7) and z =4 (mod 11)
Checking the given moduli are pairwise prime:
gcd(2, 5) - gcd(2, 7) — ocd (2, 11) - gcd(5, 7) — gcd(5, 11) — gcd(7, 11) —1

Hence the moduli are pairwise prime so we can use formula (3.23):

(3.23) r=aNz +aNz, +aNz, + - +aNzx
We are given 4 equations so we use this formula with r = 4:

x = (al lexx1)+(a2xN2Xm2)+(a3 ><N3><:1:3)—i—<a4 ><N4><x4) (1)
Evaluating each of the N’s which are given by N, = oy with n = 5,n, =2

U

,ng=7 and n, =11:
N :2><5><7><11

1 3 =154
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N2:2><5><7><11:385
7
N3:2><5X7X11:110

‘ 7
. :2><5><7><1/f:70

4 A
We need to find the z ’s which are given by Nz, =1 (mod nk) for k=1, 2, 3
and 4:
Nz =154z, =1 (mod 5) [Remember n, = 5]
N,z, = 385z, =1 (mod 2) [Remember n, = 2]
N, =110z, =1 (mod 7) [Remember n, = 7]
Nz, =70z, =1 (mod 11) [Remember n, = 11]

Solving each of these equations gives:

154z, = -z =1 (mod 5) implies z, =4
Because 154=4=-1 (mod 5)
385z, = T, =1 (mod 2) implies z, =1
Because 385=1 (Inod 2)
110z, = 5z, =1 (mod 7) implies z, =3
Because 110=5 (mod 7)
70z, = dr, =1 (mod 11) implies z, = 3

Because 70=4 (mod 11)

The given a’s are a, = 3, a, =1, a, =2 and a, = 4 because we are solving

r=3 (mod 5), r=1 (mod 2), x E2(m0d 7) and x =4 (mod 11)
Putting all these numbers a, =3, a, =1, a¢, =2, a, =4, N =154, N, = 385,
N,=110, N, =70, 2z, =4, z, =1, z, =3 and x, =3 into ({) gives:

T = (al XN, xxl)+(a2 XN, ><332)+(a3 XN, ><333)+(a4 XN, ><x4>
= (3x154 % 4) +(1x 385 x 1) + (2x 110 x 3) + (4 x 70 x 3) = 3733
Remember the modulus n is the product of the given moduli:
n=>5x2x7x11="T770

We have x = 3733 = 653 (mod 770) . The least positive integer is 653.
Check in your own time that this solution is correct, that is z = 653 (mod 770)

satisfies all 4 given congruences.
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8. (a) We need to show that if z = M(mod p) and z = M(mod q) then
xEM(modeq).
Proof.
From z = M(mod p) we have z — M = kp and from z = M(mod q) we have
x— M =cq
Hence z — M is a multiple of distinct primes p and q¢. We are given p and q are

distinct primes so they are relatively prime which implies by Proposition (2.10):
Let a and b be relatively prime positive integers then [a, b] =axb.
That the smallest multiple (LCM) of p and ¢ is p X ¢. Hence we have
x—MEO(modpxq) = xEM(modpxq)

This completes our proof.
[
(b) We are asked to prove that if p, p,, p,, -+, p, be distinct primes such that

xEM(modpj) for y=1, 2, 3, ---, k then xEM(modp1Xp2xp3><~-~xpk).

How do we prove this?
By mathematical induction.

Proof.
If k=2 then by part (a) we have our result z = M(mod P, X p2) :
Assume the result is true for & = m , that is
xEM(modeszx---Xpm) (1)
Required to prove the result for kK =m+1:
T = M(mod Py X P, XX p Xpm+1)
We consider the two simultaneous equations
r= M(mod P, XD, ><---><pm) which implies (pl X p, X ---><pm) ‘ (az — M)
=M (mod pmH) which implies p ‘ (x - M )
By Question 12 (i) of Exercises 1.3:

If a‘ ¢ and b‘ ¢, and gcd(a, b)zl then (axb)‘ c
Since the given primes are distinct so gcd( PX P, XX, pmH) =1. We can

apply this result to (pl X p, ><~-~><pm>‘ (x—M) and p ‘ (x—M) We have

(plxp2><”.><pm><pm+1) (QS—M)
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By the definition of congruence we conclude that
r=M (mod P X p, XX p xpm+1>

By mathematical induction we have our result.

[
(c) Now we have to prove a =b (mod mk) & a=0b (mod [ml, my, -, mnD.
Proof.
(<:). We assume a = b (mod [ml, My, mn]) where the notation

[ml, My, mn} is the LCM of m , m,,---, m_.
Since m, must be present in [ml, My, =y mn} so m, (a — b) because we are

assuming a = b (mod [ml, My, mnD. From m, (a — b) we obtain
a=b (mod mk).
(:>). Now we assume a =b (mod mk> and we need to deduce
a=b (mod [ml, My, o mn])
We prove this part by mathematical induction on k.
We consider the base case k =2 which is a =b (mod ml) and a =0 (mod m2) .
We need to prove a = b(mod [ml, m2D
From the base case congruent results we have a = b +m s and a = b + m,t where

s and tare integers. Equating these gives

m
b+ms=b+mit = ms=mt = s=—t

m

Remember s and { are integers so if we chose ¢ = m_then we have an integer

. m2
solution for s = 7 % =m,.
1

Substituting this s = m, into the above equations a = b + m s yields

2

a = b+ mm, which implies a = b(mod mlmQ)
By question 18 of Exercises 2.4:
Let n be a common multiple of x and y. Then [x, y} ‘ n.

Applying this to m,m, because m m, is a common multiple of m, and m, so we

1?

have [ml, m2] (mlmz). Using this [m mQ} (mlm2> and a = b(mod mlmQ) we
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deduce that a = (mod [ml, m2]) . Hence we have our result for the base case

k=2.

[Induction Hypothesis]. Assume it is true for k = ¢:

a=b (mod [ml, My, -+, mé}) (*)

|

We have to prove the result for k=/¢+1:

07 m€+1

a=b (mod [ml, My, ===y M
From (*) we have
a:b—l—[ml, my, -, mé}g1
As we are assuming a = b (mod mk> soa=b (mod mM). Therefore
a=b+m, 1t

(+171

Equating these last two equations gives

_ _ 041
[mv My = mé}sl_ml+ltl = 5= 4
|:m1, mQ, -.-, mé’jl
Choosing t = [ml, My, m[} gives s, = m,, . Substituting this s, = m,, into
the above equation a = b + [ml, My, -, mé}g1 gives
a :b+[ml, my, -, mé}mf+1 which implies a = b(mod [ml, My, m[]méﬂ)

Now as for above case we have

[ml, m,, -, m,|m,, is a multiple of [ml, My, =0y My, M, |
Therefore a = b(mod [ml, My, m[]méﬂ) implies
a=b (mod [ml, My, =y My, M, )
By mathematical induction we conclude that
a=b (mod mk> = a=b (mod [ml, My, oy mnD

This completes our proof.

We need to prove the following;:

Let n, n,, n, -, n_be positive integers which are pairwise prime. Also integers

¢,’s satisfy ged (ck , nk) = 1. Then the simultaneous linear congruences



10.
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cr =0 (mod nl)

c,r =, (mod nQ)

cr =b (mod nr>
has a solution satisfying all these equations.

Moreover the solution is unique modulo n, xn, xn, x---xn _.

Proof.
Since we are given that gcd(ck, nk) =1 so the equation
cr =0 (mod nk)

has a unique solution. Why?

Because by Corollary (3.19):
ar =b (mod n) has unique solution provided g = ged (a, n) =1
Let the solution be x. Therefore for each £k =1, 2, 3, ---,r we have
T=d, (mod nk)
Applying the Chinese Remainder Theorem to this system of equations

T=d, (mod nk) yields a unique solution modulo n, xn, xn, x--xn_.

This completes our proof.

We are given that P(a:) =0 (mod n) where n =n, xn, x---xn_ and

n, n

» My, -+, m_are pairwise prime integers.

We need to show that P(a:) =0 (mod nk).

Proof.
From P(a:) =0 (mod n) we have
P(a:) =0 (mod n, Xn, X ---an) [Because n=mn Xn,X--xXn
This means that P (x) = l<;<n1 XM, X oo X nr) where £ is an integer. Rearranging
this
P(z) =n, (lm2 X e X nr> =n, X <integer>
Since P(a:) is a multiple of n, so

P(z)= 0 (mod n,
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Similarly, we can show that P(x) =0 (mod n].) for j =2, 3,---, r. This

completes our proof.

11. We need to show that the simultaneous linear congruences:

a (mod m)

r=b (mod n)

X

Have a solution < ged (m, n) ‘ (a — b).
Proof.
From the definition of congruence we have
xza(modm) S r—a=km & rz=a+km
xzb(modn) & x—b=cn & z=b+cn
where k£ and c are integers. Putting £ = a 4+ km into the bottom equation gives

r=a+km=b+cn
Re-arranging this gives
a—b:cn—km:cn+(—k)m
This cn + (—k:)m = a — b is a Diophantine equation with the unknowns as m
and n. Now using the criteria for a solution to the Diophantine equation (1.16)

of chapter 1:

Equation ax + by = ¢ has integer solutions < g ‘ ¢ where gcd (a, b) =g.

Hence cn + (—k)m = a — b has a solution & ged (m, n) ‘ (a — b). This is our

required result.



