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Complete Solutions to Exercises 5.1

1. Since we are given a prime in each case, so we use Proposition (5.2):
If p is prime then gb(p) =p—1.
a) ¢(13) =13 -1 =12.

(

(b) ¢(211)=211-1=210.

(c) ¢(311)=311-1=310.
(d) ¢(1973)=1973 — 1 =1972.
() ¢(1999)=1999 -1 =1998.
(f) ¢(2017) = 2017 —1=2016.

2. In each case we use formula (5.9):

1oL
by

This means we need to factorize each of the given numbers into its primes.

P

D,

oL

P,

p— kl k2 kr
where n = p* X p,? X=X p

$(n)=n

(a) The prime decomposition of 15 =5 x 3. Applying (5.9) gives

g3l

(There are 8 integers between 1 and 15 that are relatively prime to 15.)

$(15) =15

(b) We need to find the prime decomposition of 64;
64 = 2°.
Applying (5.9) with p =2 and k = 6 gives

¢(26):26[1—%]:2“[%]:25 = 32.

Therefore gb(64> = 32.

(c) Evaluating the prime decomposition of 200 gives

200 = 8 x25 = 2* x5’
Using formula (5.9) with n =200, p, =2 and p, = 5:

-

(d) We can write 1000 in its prime decomposition as

6(200) = 200

1000 = 10° = (2x5) = 2° x 5.
Using formula (5.9) gives
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¢(1000) = 1000[1 - %] [1 - %] = 1000 [%] [g] = 400

(e) Which prime numbers go into 10019
1001 =7x11x13.

Using the above formula gives

#(1001) = 1001[1 i l] [1 ) %][ ! L?’]

S R
(f) The prime factorization of 666 is
666 = 6x 111 =(2x3)x (3x37)=2x3"x37.
So 666 is made up of the primes 2, 3 and 37 therefore

6 (666) = 666[1 - %] [1 _ %] [1 ~ %]

= 666 1i2]136 =216
2)3]|37
There are 216 integers between 1 and 666 that only have a common factor of 1

with 666.

3. In each case we only have one prime factor. We can still use formula (5.9):

oL
p,

(a) We are given 2. Applying this formula with n =2 and p, =2 we obtain

¢(21000> — 91000 [1 . %] — 91000 [%] L

oL

b,

-

$(n)=n )

Since the only factor is 2 so (;5(21000) = 2" is the number of odd numbers up to 2'*"

which is % of 2'", hence 2°.

(b)  Similarly for 3" we have

¢ (31000) — glow

1_1 :31000 2 :2><3999.
3 3

31000

¢(310°°) means the number of natural numbers up to which are not multiples of

3is 2x 3.

(c)  For 5" we have

1000\ __ <1000 1 _ 1000 4 o 999
¢(5 )_5 [1—3_5 S| =axs™.
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Similarly, ¢(51°°0) = 4 x5" is the number of integers between 1 and 5" which are

not multiples of 5.

(d)  Also for 7" we have
1000 ) __ ~1000 1 __ ~1000 6 _ 999
(7)) =7 [1—?]_7 [?]_6><7 .

Hence there are 6 x 7 natural numbers up to 7" which are not multiples of 7.

4. We need to prove (b(p’") = gb(p)p’"il = (p — 1)p’”’1 where p is prime.
Proof.
Using formula (5.9) with one prime factor p gives
1
1 - _]
p
p—1

p

This completes our proof.

¢(pm) =p"

m

_, —p" (p=1)= p"(p) [By 5:2) o(p)=p—1

m
5. How do we show ¢(2”’) = %(2”) ¢
Use the result of question 4.
Proof.
Using qb(pm) = (p — 1)])7’“1 with p =2 and m =n gives
ofz) -2 )z
_ ot _gign _ |1 g
2
m

¢(2"> =t — %(2”) means that half the natural numbers from 1 to 2" are

relatively prime to 2" . Of course, these are all the odd numbers from 1 to 2".

6. We need to show that (;5(10’") = 4(10’”71).
Proof.
We use formula (5.9):

oL

b,

1L

D,

oL

¢(n): n »
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With n =10™. The prime factors of 10 are 2 and 5, so
1077]. — 27", X 57", .
Substituting n = 10", p, =2 and p, =5 into formula (5.9) yields

by
=10 [33] =10 = ot

This completes our proof.

7. We need to prove that (b(nm) = n"“l(ﬁ(n).
Proof.
Let the prime decomposition of n be
n = plkl X pgk'2 X p3k3 X eee X prkf where D, ’s are distinct primes.
Expanding the right-hand-side of the given statement:
Substituting

m—1

nm71¢<n) = (plkl % pzkz XX P r) ¢(p1kl % p;'? Seee X prkr)

p— kl k?'
n_pl ><.><]97

_ kl m— kl k2 m— k2 /c,_ m— k,_ kl k2 k7
= D, X p, XX p, [fb(pl )X¢(p2 )><---><<b(p,. )}

Using the rules of indices

km—k k kym—k, k. km—k . k
=p" lcb(pll)xz?; 2¢(p22)><---><p,7 7¢(p,’)

. kym—k, ky k-1 x kym—Fk, k, ky—1 x x km—k, k, k.1
- 1 D, D, p, D, p, D, D, D,
Using @(pk ):pk 7pk’l
. kym km—1 x kym kym—1 x % k.m k,m—1
: pl pl p2 pg p’r‘ pr
Using the rules of indices v / \ v / \
_ kym _ kogm iy k,m
~o[n") ~ofp o)

)
= o(p" ) xo(p,"" )5 0(p")
(

= o(p,"" xp, " e p ) = ¢[ Pl xp xxp ) l =¢(n")

8. There is only one example of gb(n) =n whichis n=1.

9(n)

n

9. In the main text we have gives the probability that a number we choose

between 1 and n is relatively prime to n. Let n =164 then

$(164) = ¢(2x 82) = ¢ (4 x 41) = ¢(4) x ¢ (41) = 2x 40 = 80.
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Therefore, the probability that m & {1, 2, 3,~-~,164} is relatively prime to 164 is

¢(164) 80 20

164 164 41

10. (a) Recall (b(?) 10) gives the number of incongruent residues which have an inverse

modulo 310. Converting 310 into its prime factorization 310 = 31x10 =2 x5 x 31

1—l 1—l 1—i =120.
2 5) 31

(b) Proof. We have (b(p”’) = p" —p"". By part (a) this number gb(pk) =p" —pt!

and applying (5.9) yields

¢(310) =310

tells us how many integers have an inverse modulo p". Therefore the probability

of a given residue a(mod p") having an inverse is

) _pop_r

n n n n

p p p p p
This completes our proof.

11. (a) We need to find n such that (b(n) = g

Recall that qﬁ(n) =n|l— L 1-— L 1— L where the p’s are the primes in the
p, b, b,
prime decomposition of n. This implies we need to find n such that
0 PN | P O PR )
D, P, p.] 2

So n can only have one prime p =2 so n = 2" where a is a natural number and

pil=n
2] 2

(b) We need to find nsuch that (b(n) = % Similarly to part (a) we have

n

oL

b,

oL

p,

1L
by

n
n —.
3

The only prime cannot be 3 because

n 1—l :2_n.
3 3

Since we want to cancel the 2 on the numerator so the prime 2 must be present:



12.

13.

14.
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-]

Hence n = 2°3" where a and b are natural numbers.

n
3

We need to find a natural number n such that (b(n) < % This means we are

looking for a number where less than a third of the natural numbers up to n have
no factor in common with n apart from 1. This implies that we need a number
which has lots of factors because 2/3 of the natural numbers up to n must have a
common factor greater than 1.

By the solution to question 11(b) we can say that if n has the prime factors 2 and
3 present then gb(n) = % If we add another prime factor, 5 say, then we have the

integer 30 because 2x 3 x5 = 30 then

¢(30):¢(2>x¢(3)x¢<5):1><2><4:8<%:10.

Therefore, one example of (b(n) <% is n=230.

We need to prove that qb(n) = %n given n = ok 3% w5k
Proof.
Using formula (5.9):

oL

P,

ob=rpgh-ghg

-

oL

D,

oL

p,

¢(n) =n

With n = 2" x 3% x5% gives

Therefore (b(n) = in

15

We are asked to prove that qb(n) < M where p ‘ n.
p

Proof.



15.

16.

17.
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We are given that the prime p satisfies p ‘ n therefore gcd( D, n) =p>1.Let S

be the set of some residues modulo n that are not relatively prime to n:

n
S = {pa 2p7 3p7 a_p}
p

Then Card (S ) = These 2 residues are not relatively prime to n. There may be
p p

others as n may have other prime factors present. By the definition of the Euler

totient function ¢(n> we have

¢(n)§(n—1)—%<n_%:npp—n:n(Pp—l)

This completes our proof.

(i) The only instance where gb(n) =n isif n =1 (see question 8). But for n >1
we have (b(ﬂ) <n.
This (b(ﬂ) > n is impossible because (b(ﬂ) counts the natural numbers up to n

which are relatively prime to n. This number cannot exceed n.
(ii) Proof.

n
To show that 0 < M <1 we use the result of part (i). By the definition of gb(n)
n
o(n)

and part (i) we have 1< gb(n) < n . Substituting this into gives
n
1 _o(n
0<—< ") <t
n n n

We need to produce a counter example. Well

6(3+7)=0(10)=4 but ¢(3)+¢(7)=2+6=8.

We are required to prove that ¢(¢ (pk>) = p"’72¢[p(p — 1)]
Proof.
In question 4 we have already shown that gb(p’”) = ( p— 1) p" . Applying this to
(b( pk> gives
o(p)=p"(p—1).



18.

Complete Solutions 5.1 Page 8 of 19

We want to use the multiplicative property of ¢ . However to use this we need our

natural numbers to be relatively prime, that is
gcd(pk*l, p— 1) =1.
Suppose gcd(p“, P —1) =g¢g>1.Then ¢ ‘ P! and g¢ ‘ (p — 1).

1

Now one of the factors of p*' is p. Clearly p < g because the only divisors greater

than 1 of p*™ are p, p°, p°®, ---, p*". This implies that p‘ g because g‘ ptt.

Since g

( p— 1) SO p ‘ ( p— 1) which is impossible. Therefore our supposition
gcd(pkil, p— 1) = ¢ > 1 must be wrong, so gcd(pkil, p— 1) =1.
Hence using the multiplicative property of ¢ we have
A
ool

= pk*2 (p — 1)¢(p — 1) [By using the result of question 4]
= Pk72¢<p>¢(p — 1) [Because gb(p) =p-— 1]
=p"p (p( p— 1)) [By the multiplicative property of <;5]

We have shown ¢(¢ (pk)) = p’Hqﬁ[p (p — 1)]

We need to prove that ¢<d) ‘ ¢<n) provided d ‘ n.
Proof.

Using the hint and writing d and n in its prime decomposition:

m, +k, my+F.

1 2 cee m7'+k
X p, XX P

rxp m7-+1><'”><p
r+1 k

Wl,k

d=p™ xp™ x--xp™ and n = p,
9 . . . _ 771,1 m2 .. 7",? "Ll
where the p’s are distinct primes. From d = p™ x p,”™ x---x p ™ we have p | d

where m, is the highest power of the prime p which divides into d. However,
there may be higher powers of p which divide into n. We have written the

highest power of p which divides into n as m + k. Similarly, for p,, p,, ..., p, .
That is why we have

m, +k, m_+k

_ | mythy o0, r TR, Trdl se oL s
n = pl X p2 X X pr X pr+1 X X pk

Finding the Euler totient function for each of these numbers gives
¢(d) = cb(plml X Py X e X p,.m")
= Cb(plml ) X ¢(P2m2 ) X e X gb(me?') [By Lemma (5.7)]

Similarly we have



19.

20.
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ofn) = o o oo <ol xxofn)
By result of question 4:
¢(p’") =(p—1)p™"
We have
¢ (plml) = ( P — 1) pl'”’l’1
o(n" ") = (p = 1)p

Therefore ¢ (lel) ‘ ¢(p1ml+k1 ) Similarly, ¢ (pzmz) (p(p;”?*"*z ), ,gb(pr%) ‘ (b(pﬁ“)

From this last evaluation and using (*) we have

oo Jolo )0 (n) | o(n)

=

Therefore ¢<d) ‘ ¢<n)

[

We need to show that ¢(22k“) =P,

Proof.

Using the result of question 4:

o(p")=(p—1)p"",
with p =2 and m =2k +1 gives
¢ (22k+1) — (2 _ 1) 22]€+171
2
=2% = (2]“) =0 where [ =2"

This is our required result.

[

How do we prove ¢(pqu) = pk*lqk*% <q)¢(p) 2
By using the multiplicative property of the ¢ function and Proposition (5.4):
¢(pk) _ pk _p/H
Proof.
Since we are given that p and ¢ are distinct primes so by Lemma (5.7):
ol cnsn’ | =ol ol eoocoly
We can use this multiplicative property because p and ¢ are distinct primes so

gcd(pk, qk) =1:
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(" xa") = o(p")x 0 (d")
Applying Proposition (5.4) to each of these gives:

:(pk —p"! (qk —q" 1)

— pigt — pigtt — piigt 4 pFlgt [Expanding brackets]
— plght [pq —p—q+ 1] [Factorizing}

— phlgh! [q(p ~1)—(p- 1)}

_ pkflqkfl [q . 1] (p _ 1) [Factorizing}

_ pk71qk71¢(q)¢<p) [Because cb(p) =p—- 1}

k k k=1 k-1

Hence we have qb(p' X q ") =p" q ¢(p)¢(q) which is our required result.

. We need to prove Corollary (5.6) which claims:
gb(ml X M, X e+ X mk> = gb(ml)x ¢(m2)>< ---><q§<mk> provided the integers m, are
pairwise prime. That is ged (mi, mj> =1fori=jand 1<4, j<k.
How do we prove this result?

Use mathematical induction and the three steps of induction are:

Step 1: Check for some base case m,, m, .
Step 2: Assume the result is true for m, m,, m,, ---, m_.
Step 3: Prove this for m, m,, m,, -

Proof.

, M., m. .

Step 1: Since we are given that ged (mi, m7_> =1 so ged (ml, m2) =1.
By Proposition (5.5):

(b(m X n) = ¢(m) X ¢(n) provided gcd (m, n) =1

We have
¢(m, xmy) = 6 (m,)x 6 (m,)
Step 2:
Assume that
¢(ml><m2><m><m]_):¢(ml)><¢(m2)><~-><¢(mj) ()

Provided ged (mi, m],) =1 where i = j.

Step 3:

We are required to prove that



22.
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¢(ml XMy X e X, X m]_H) = ¢(ml)><¢(m2)>< m><¢(m].> ><¢(mj+l>
Consider the left-hand-side of this:
¢(ml XMy X e XM X m]_H) = ¢([m1 X, X +ee X mj] X m]_H) (1)
In order to split the right-hand-side we need to ensure that
gcd([m1 X m, X+ X mj], mM) =1
We are given that
gcd(ml, mﬂl) = gcd(mQ, mm) = gcd(mg, m].H) =...= gcd(mj, m].H) =1
By the result of question 15(ii) of Exercises 1.3:

gcd(a, nl):gcd(a, n2)2~-~:gcd(a, nk)zl = gcd(a, nlxn2><--~><nk):1

We have gcd([m1 X m, ><-~-><m]l, mm) =1.
Now we are in a position to apply Proposition (5.5) to (1):
qb(ml XMy X e X, X ij) = ¢([ml XMy, X - X m]]x m]_H)
olm <o,
- ¢<ml)x¢(m2)><m><qb(m],)><¢(mj+l>

Byv(*)

By mathematical induction we have our result;

qﬁ(ml ><---><mk> = ¢(m1)><><¢(mk>

We need to prove the following:
If n= ])1k1 X ka2 X pgk3 X +e X prkf then

L

$(n)=mn )

1_i 1_i
D, D,

Proof.
By Proposition (5.8) we have

k, k-1 k, k,—1 ky ky—1 K, k-1
5(n) = (1 — 227)(ms" — 2 )(o = 5[5 — p7)

Taking out factors gives
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(n) = ( t—p 1)(102’"—192 )( Ak3—p3k3_1)~~(p,,k"—p,.’“’_l)
= (L= (1 p o (L) (10,7

= p1k1p2k'2p3k3 ,.-prk,. 1—— 1—— 1—— 1__ Because pm,1 _
:vn pl p2 p3 pr / m
=n 1—i 1—i 1_i...1_i
p1 p2 p3 p”‘
This completes our proof.
]

23. We are required to prove that if ged (m, n) = 2 then
¢>(m><n) = 2x¢(m)x¢(n).
Proof.
We are given that gcd(m, n) = 2 so there are integers = and y such that
2x =m and 2y =n.

Then gcd(:c, y) =1. Why?

Because z = % and y = g so by Proposition (1.5) of chapter 1:

gcd(a, b) = g implies gcd[%, s] =1

We have gcd(az, y) = ged %» Z

=1.

Since gcd(x, y) =1 we can apply the multiplicative property of the Euler totient

function ¢ . Therefore, we have

¢ (mxn)= (20 x2y) = ¢(22:z;y).

Let the primes of z which are distinct from 2 be p, p,, ---, p and the primes of
y distinct from 2 be ¢, ¢q,, -, q,-
By formula (5.9):
¢<n):n TP | PR I P
b, D, D,

Applying this formula to ¢ (mn) =¢ (22:1:y) gives

¢(22xy):22xy[1—1]>< I | Y (O Y (V) R (U
2 2 b, b, q, q,
= 2zy 1_i 1_i...1_ix1_i...1_i (J[>
pl p2 pr ql qt
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Applying formula (5.9) to 2¢ (m)QS(n) gives
2¢ (m)¢(n) =2x ¢<2$) X d)(?y)

:2x2x1_1Jx Ao xgy[l_l]l_l...l_l
2 pl p2 pr 2 ql qt
b, b, b, q, q,
by Db, D, 4 q,

=o2w)  [By (1)

Hence we have gb(mn) =¢ (22zy) = 2¢ (m)gb (n) which is our required result.

24. We need to prove ¢(m> =2 (2’“1 — 1) given that m = 2" (2” — 1) where 2" —1
is prime (Mersenne prime).
Proof.
Since we are given that 2" —1 is prime and as n > 2 so this number is an odd

prime. The only prime factor of 2" is 2. Therefore
ged (2’“, - 1) = 1.
We apply the multiplicative property of ¢ on m:
o(m)=o(2 2 1))
= o(27) x o2 -1)

e — 7
=2 x (2" -2
= 2727 x (2" 2]
=2 (20 1)
We have our required result.
n
¢(m)xo(n)x g

25. (i) We are asked to prove gb(m X n) = ¢( )
9

Proof.
Let gcd(m, n) =g.

Case I If m = n then m xn = n’ then by the result of question 7:

o) = n=o(r)
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We have ¢(n2) =n’" (n) = no (n) Also g = ged (n, n) = n so evaluating the
right-hand-side of the given result:
olm)coln)x_ o) ghe o
- = n6(n)
é(9) M

Hence, we have our result if m =n .

Case 11

If m = nthen m and n will have some different primes in their decomposition.

e e e a, a a ; : 1o 2 bJ'
Let m = (p11p2 Peeep ) X (ql 'q,” g, ’) and n = (plflpzfz -~-p7,f7 ) X (slb S2b 8 ) be
the prime decompositions of m and n and e > 0 and f] > 0.

By Proposition (2.21) of Chapter 2 the ged is given by:

min(e,, f minle,, f, min(e, , f,
gcd(m, n):p1 ( )><p2 ( )X"'ka 5]
Therefore, we have
min(e,, f; min(e,, f, min(e,, f.
g = ) 8] melt)
By formula (5.9):
¢<n):n TP | PR I P
p, b, b,
We have (b(g):g 1—i B 1—i which implies
b, b, b,
L 01 PR R PR ) I
g P, », D,
Similarly, by this formula (5.9):
qu(m):m PR | P U O | PR N | I U PR
2 D, D, q, q, q,
o(n)=n TS | P O IS SN | PR | PR I PR
by D, p, 5 5 5
b, D, 4 9 9 5 5
olm|xop(n
Evaluating M gives

¢(9)/ g
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oA A 1_1]...[1_1]Xn1_1 (o1 1_1]...1_1
¢ (m)xo(n) P, p I g q P, p )l s s,
olg)/ g
(9)/ AN A X
b, p, p,
b )
= mn 1fi...1fi 1fl...1fi 1fl...1fi
» D, q, q 8 s

The last line is identical to (*). Therefore, we have

o (n) = 2Lm)x0ln)_ ofm)xo(n)xg.
$(9)/ g é(g)
This completes our proof,

[

(ii) We need to prove that Euler’s totient function is multiplicative.

Proof.

Substituting g =1 into part (i) gives us our required result:

¢(m X n) = gb(m) X gb(n) provided gcd(m, n) =1.

[

[Here is another proof of this result:
Consider the array of positive integers:

n—+1 n—+ 2 n+4--- n+n
) ) ) .t m rows

(m—1.>n—i—1 (m—l.)n—l—Q (m—ljn—l—m mn

n columns

There are gb(n) columns which are relatively prime to n. In each of these columns
there are only gb(m) elements which are relatively prime to m. The number of
elements in the array which are relatively prime to m xn _is ¢(m X n) Each of these
numbers are relatively prime to m or n. From above we have there are gb(m) X ¢(n)

of these numbers. Therefore ¢(m X n) = gb(m) X gb(n) ]

26 Weneed to prove ¢(iem (a, b))x6(ged(a, b)) = (a)x6(b) becanse we
are given that [a, b] - zcm(a, b).

Proof.

Let ¢' — gcd(lcm(a, b), ged(a, b)) Then by the definition of ged we have
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g = gcd(lcm(a, b), gcd(a, b)) = gcd(a, b) = g say.
By Proposition (2.22):

gcd(a, b) x[a, b} =axb

We have lcm(a, b) X gcd(a, b) = a X b. Therefore

¢(lcm(a, b)x ged a, b)) = p(axb) ()
Re-arranging the result of the last question part (i):
_sln)xeln)xs
qb(m X n) = ¢<g>
We have
o) - Lzl

Applying this with m = lecm (a, b) and n = ged (a, b) gives

olion(o, 8)<seifo ]Jol)

_ ¢(axb)¢(9) ’ [By (*)]
= o(a)xolt)

qS(lcm(a, b))x¢(gcd(a, b)):

This completes our proof.

27. (i) We are asked to prove Z ¢<d) ="

d‘pk

Proof.

k—1 k

The divisors of p* are 1,p, p*, ---, "', p*. We have
Soo(d)=0(1)+6(p)+ o (p*)+ -+ (") +0(p')
d|
1+(p_1)+(p2_p>+“.+(pk—l_pk—2)+(pk_pk—1)
=1+(p—1)+p(p—1)+---+pk72 (p—l)—i—pk*l(p—l) [Factorizing]
L (p =) p b0 9

1-p® . .
=""P by sum of geometric serics

_ ok k_ Multiplying numerator and
=1+( —1)1 P4 (pt]| =L P e
—p })//1 denominator by —1

This completes our proof.
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(ii) Similarly, we prove Z <b(d> = Z ¢(d) Z (b(d') = p'q".

d‘ P d‘ o d“ "
Proof.

It is longer proof than part (i) but the procedure is very similar. Since the given

primes p and ¢ are distinct so ged ( P, q) =1. We have

>oeld) = o)t > eld) -1 3o e(d) -1+
d‘pkqm e e in the d‘pk d‘qm
{1 dt de. n the right by pa 1t (i) by part (i)

+¢(pa)+ ¢(p’a) + -+ 6 (p'a)
+ ¢(pq2) + d>(p2q2) +ot ¢(pkq2)

+¢(pq )+¢(p2q’”)+ +<b(p’“q"’)
P PR W M P

By multiplicative property of ¢ . ¢(p):¢(q2) N ¢<p2)q5(q2) . + qﬁ(pk)(b(q?)
+¢(p)o(q )+¢
o(1)+[p ~1+|a" —1)+o(p)(a 1)+

(-1
q—q

T{Il

By o'

olp)et o) ol o) oo o

Q
= Al
N

From part (i) we have
6(p)+o(p’)+-+o(p)=p" —1
Substituting this into (*) yields
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P Y
e
:1+[pk—1]+[qm—l]+[pk—1] (q—l) [1+q+q2+---+qm71]

Factorizing out (q—l)

Using the sum of

geometric series on the
last brackets.

Multiplying the numerator

=1+ [pk B 1} + [qm B 1} + {pk B 1](qm - 1) and denominator by —1.

=1+p" —1+q¢" —1+p'¢" —p" —¢" +1 [Expanding]
k_m
=DPq

By Part (i) we have

> o(d)=p'a" = 320(d) 3 o(d)

e e oo
Hence, we have our required result.
[

(iii) To prove Zqﬁ(d) = n we write n in prime decomposition form and then apply proof
d ‘ n

by induction.
Proof.

Let n = pl]Cl X p,zk2 X eee X prk" where p are distinct primes. Then by part (i) we have
> o(d)=
d plkl

We assume the result is true for r = m:

> o(d)=p" xp" xxp (*)

bk k
O T
Py XPy T X Xpy,

d

Required to prove the result for r=m +1:

Z ¢ (d> - plkl x kaQ XKoo X pmk"’ X pm+1km+1 .

k ke k 3
1 2% ‘m m+1
d| Pyt Xpy XX, XD,

We can write
ky k, K, ki ky k, K, L
pl Xp? X”.Xpm Xperl - pl XpQ X”'Xpnl Xpm+1 :
Since the p’s are distinct primes so gecd (plkl X p2k2 X oo X pmkm, pmﬂk?"“) = 1. By part (ii)

we have
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2 k, k, k
d Plkl XPQk‘Z X‘“Xpm m Xperl m+1 d ‘ P 1><P 2% X],m ) d 1 " m+1
— ky ky +1
(pl X p2 x x pm pm+1 n
by (*) by part (i)

This completes our proof.



