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1. In each case we create a table and then plot the appropriate graph:

(a) We are given p =5 so our least positive residues are x =1, 2, 3 and 4:

T 1 2 4
2 (mod 5) 1 4 4 1
Plotting this graph gives
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As we can see from the graph and table there is no solution to z* = 2 (mod 5).

Therefore, we cannot solve the Diophantine equation z° =2 + 5y .

(b) This time p =17 so our table is

Using the above graph or table we have

x 1 (2 (3 |4 |5 1|6 |7 |8 |9 [10 |11 (12 |13 |14 |15 |16
z’ (modl?) 1 (419 |16 |8 |2 |15 |13 |13 |15 |2 |8 |16 |9 (4 |1
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=2 (mod 17) = =6 (mod 17) and z =11 (mod 17)

Now we need to solve the Diophantine equation

P =2+17y.
Substituting the simplest of these solutions for x we have x =6, z =11 gives
36 —2
6°’=2+17Ty = y=——=2
) Y 17
121 -2
1P =24+17Ty = y= T =7

Our solutions are {x =6, y= 2} and {x =11, y= 7}.

(c) Similarly for p =19 we have:

T 11234156 |7 [8/9]10(11|12|13|14|15|16 |17 |18

wZ(m0d19)1491661711755 711176 1619 | 4|1

Plotting this graph gives:
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As we can see from the graph and table that there are no solutions to
=2 (mod 19) .

Hence the Diophantine equation z> = 2 4+ 19y has no solutions.

In each case we use the Proposition (7.4):

-1 ) .
T quadratic residues.

(a)  Substituting p = 1223 into this formula gives that there are
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122371 = 611 quadratic residues of 1223.
o 3571 -1 . .
(b)  Similarly, there are exactly — 1785 quadratic residues of 3571.
(¢)  Also, there are % = 52 364 quadratic residues of 104 729.
(d)  Repeating this we have 17 4242673 -1 89 712 336 quadratic residues of

179 424 673.

. We need to use Euler’s Criterion (7.5) to determine whether the given residues are

quadratic residues:
pffl
a is a quadratic residue of p & a? =1 (mod p)
p—1 37-1
2

(a) In this case we need to evaluate 6 (mod 37) . We have

18.

We are given the prime p = 37 so

6" = 36 = —1(mod 37).
Therefore using the rules of indices we have
6" =(6) = (1) =1 (mod 37).
Since 6" = —1 (mod 37) so by Euler’s Criterion, 6 is a quadratic non-residue of 37.
(b) Similarly, we need to find the least positive residue of 2' (mod 37) . Evaluating

a simple power of 2 gives
2" =32 =5 (mod 37).
Writing the index 18 as a multiple of 5 plus any remainder we have
18 = (3x5)+3.
Therefore, we have
918 — o33 (25>3 x 2°
=(-5) x8=-125x8 = —14x8 = 112 = —1 (mod 37|
Since 2" = -1 (mod 37) so 2 is a quadratic non-residue of 37.

(c) This time we need to evaluate 12" (mod 37). First we find 12° (mod 37):

122 =144 = —4 (mod 37)
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Evaluating powers of —4:
(~4)" =16 (mod 37)
(~4)' =—64=—(~10) =10 (mod 37)
(~4)' =-4x10 = —40 = 3 (mod 37
Since —3 is a smaller number let us use this result; (—4) = —3 (mod 37). We have
12 = (12°) = (-4
= (~4) x(~4)
= [(—4)4 . (—4) = (=3)" x(~4) = —36 = 1(mod 37|

Hence 12 is a quadratic residue of 37 because 12" = 1(m0d 37).

(d) We need to find the least positive residue of 5 (mod 37) . Finding a simpler
index of 5:
5 =25 =12 (mod 37).

We have

5% =(5) =(~12)" (mod 37) ()
For the residue —12 we can use the results of part (c).

(~12) = (~12) x(-12)

= (122)4 x(~12)

= (—4) x(~12) = (-3)x(-12) =36 = -1 (mod 37)
Using this result in (*) gives

5% = (~12) = -1 (mod 37).

Hence 5 is a quadratic non-residue of 37.

. To find the square root of a(mod p) means we need to solve z° = a(mod p).

We need to first determine if the given residues are quadratic residues. How?
By using Euler’s Criterion (7.5):
p—1

a is a quadratic residue of p < a? =1 (mod p)

In each case p =17 so p2_1:172_1:8.
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(a) We first need to find the least positive residue of 2° (mod 17) . Well we have
2' =16 = —l(mod 17).
Therefore
2° = (24)2 = (—1)2 = l(mod 17)
By Euler’s Criterion, 2 is a quadratic residue of 17 because 2° = l(mod 17). This

means that 2° =2 (mod 17) has solutions. Squaring z =1, 2, 3, 4, 5 does not give

2 modulo 17. Squaring = = 6 gives

6" =36 =2 (mod 17)
Hence z =6 (mod 17) is one solution. By Proposition (3.14) (b):

> =b (mod p) & a=4b (mod p)
We have the two solutions given by:
P =6 o mE:i:GzG,—GzG,ll(modl?).

The two square roots of Q(mod 17) are v =6, 11 (mod 17) .
(b) We have been given z° =16 (mod 17) . Note that

' =16=4" (mod 17).
We have

=4 = xzj:4z4,—454,13(m0d17).

Square roots of 16(m0d 17) are v =4,13 (mod 17) .
(c) This time we are given z° =5 (mod 17). Again, we first test to see if there are
solutions. We need to find the least positive residue of 5° (mod 17):

5 =25 =8 mod 17).
Remember 8 = 2* so

5 =(5) =8 =(2°) =(2) (mod 17) ()
Recall (from part(a)) that 2* = —1(mod 17). Substituting this into (*) yields
5" = (24>3 = (—1)3 =-1 (mod 17).

Since 5° = —1 (mod 17) so b is a quadratic non-residue which implies

=5 (mod 17) has no solutions.
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The square roots of 5 (mod 17) do not exist.

. In each case we need to complete the square on the given residues.

(a) We need to solve 2° +22 +2=0 (mod 23). Completing the square, we have

42 +2=2" +2x+1+15(m+1)2 —i—lEO(monS).
Subtracting 1 from both sides gives
2
(z+1) = —1(mod 23).
Let y = z 4+ 1 then we need to solve y° = —1 (mod 23).

The prime p is 23 so we first need to find

(_1)p21 = (—1)2321 = (—1)11 =-1 (mod 23).
This means there are no solutions to y = <x + 1)2 =-1 (mod 23) so there are no
solutions to the given congruence z°> 42z +2 =0 (mod 23).

(b) Now we need to solve the quadratic congruence z* + 4z +2 =0 (mod 23).
Completing the square gives

:U2—|—4x—|—2£:1:2+4:c—|—4—25(x—|—2>2—250(mod23).
:(x+2)2

Adding 2 to both sides yields
(v+2) =2 (mod 23).
Let y = z 4+ 2 so we need to solve the quadratic congruence
Yy =2 (mod 23) .
First, we need to see if 2 is a quadratic residue of 23 by applying Euler’s Criterion.
This means we must find the least positive residue of 2" (mod 23).
Evaluating some simple powers of 2:
2 =32=9 (mod 23), 2 =64=-5 (mod 23)
We have
2 =27 =20 x2" = —5x9 = —45=—22 =1 (mod 23)
Hence, we have solutions to y° = 2 (mod 23) . We have two solutions to this

quadratic congruence. Trying y =5 gives

52 =95 =2 (mod 23).
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We need to find the other solution which is given by —5 = 18(mod 23).
We have the solutions y =5 (mod 23) and y =18 (mod 23) . Remember we need to
find z where y = x + 2. Subtracting 2 from both these congruences gives
x+255(mod23) = xz3(mod23)
r+2=18(mod 23) = = =16 (mod 23)
The two solutions to the given congruence x> + 4z +2 =0 (mod 23) are
rx=3, 16 (mod 23)
(c) We are required to solve z° +6x +5=0 (mod 23) . Completing the square gives
2’ +6z+5=12"+6x+9—4
5(1’+3>2 —450(m0d 23)
Adding 4 to both sides yields
(+3) =4 (mod 23]
Let y = 2 + 3 so we must solve y° =4 (mod 23). Clearly trying y = 2 is going to
work because 2° = 4 (mod 23) . Hence one of the solutions is y =2 (mod 23) . We
need to find the other solution. Therefore
y=+2=2-2=221(mod 23).
Hence, we have y =2 (mod 23) and y =21 (mod 23). Substituting y = z 4+ 3 gives
x+352(m0d23) = rx=-1=22 (mod23>
r+3=21(mod23) = z=18 (mod 23)

Our two solutions to 2° + 6z +5 =0 (mod 23) are v =18, 22 (mod 23).

We need to prove that —1 is a quadratic residue of an odd prime p <
p=1 (mod 4) )

Proof.

(<:). Let p=1 (mod 4) so p =1+ 4k where k is an integer. Using Euler’s
Criterion (7.5):

p—1

a is a quadratic residue of p < a? =1 (mod p)

Applying this with « = —1 gives



Complete solutions to 7.1 Page 8 of 16

p—1 4k41-1

)7 = () = ()" =1 o

Hence —1 is a quadratic residue of p.

(:>). Let —1 be a quadratic residue of p. By Euler’s Criterion we have

p—1

(—1)7 =1 (mod p).

p—1

This implies that must be even or £—

= 2m where m is an integer. Making

p the subject of the formula gives p —1 = 4m which implies p =1 (mod 4).

This completes our proof.

(a) We are required to prove that if a is a quadratic residue then p —a is a
quadratic residue < p=1 (mod 4).

Proof.

This is very similar to the proof of the previous question.
(<:). Let p=1 (mod 4) so p =1+ 4k where k is an integer. Using Euler’s
Criterion (7.5):

—

p—

a is a quadratic residue of p < a? =1 (mod p)
Applying this
1 1
(p=a)?® =(0)
p-1 p-1 dk+1-1 p-1 p-1
E<—1)2(12 E(—l) 2 a? =a = 1(modp)
D — Because a is a
=1 quadratic residue of p

By Euler’s Criterion p —a is a quadratic residue of p.

(:>). Let p —a be a quadratic residue of p. By Euler’s Criterion we have

= =
(p=a)* = ()"
plopl
= (—1) 2 q?
= (—1)p21 1 [Because a is a quadratic residue]
= (—1)1)21 =1 [Because p —a is a quadratic residue]
p—1

This implies that must be even or £—= = 2m where m is an integer. Making

p the subject of the formula gives p —1 = 4m which implies p =1 (mod 4).
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This completes our proof.

(b) In this case we need to prove:

If a is a quadratic residue then p —a is a quadratic non-residue < p =3 (mod 4).
Proof.

(<:). Let p=3 (mod 4) so p = 3+ 4k where k is an integer. Using Fuler’s
Criterion (7.5):

p—1

a is a quadratic residue of p < a? =1 (mod p)
Applying this
p—1 p—1
(oo™ =]
b1t
()"
4k+3-1  p-1
()
= (—1)2“1 a%l = (— 1) 1 =-1 (mod p)

Because a is a
quadratic residue of p

By Euler’s Criterion p —a is a quadratic non-residue of p.

(:>). Let p —a be a quadratic non- residue of p. By Euler’s Criterion we have

(p=a)® = (o)
p1 ool
= (—1) 2 q?
= (—1)1)21 1 [Because a is a quadratic residue
=(—1 %1 =-1 Because p — a is a quadratic non-residue
(=)

D -1 : :
This implies that 4 must be odd or £ = 2m +1 where m is an integer.

Making p the subject of the formula gives
p—1=4m+2 = p=4m+3

which gives p =3 (mod 4).

This completes our proof.

. We need to show that az’ + bz + ¢ = O(mod p) where p/a can be written as

Y = m(mod p).
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Proof.
Multiply both sides of the given quadratic congruence by 4a yields

40’2 + dabx + 4dac = O(mod p) .
Completing the square on this gives
4a0°2” + 4abz + dac = (2ax + b)2 +4ac — b’
= (2@3; + b)2 =0 — 4ac(mod p)
Let y =2az + b then y* = (an + b>2 and let m = b° — 4ac.

We have 3 = m(mod p).

We solve each of the given quadratic congruences using the above established

formula.
(a) We are given 22° +2z +1= O(mod 29) so substituting a =2, b=2, ¢ =1
into y =2az +b =4z +2 and m = b’ —4ac:4—(4><2><1): —4 yields
Y = —4(mod 29) = 25(m0d 29).
This 12 = 25 = 5° (mod 29) implies y = 45 = 5, 24(mod 29). We have
y=4dz+2=5 = 4z =3 = xES(mod?Q)
y=4z +2=24 = 4r=22 = xEQO(m0d29>
Our solutions are z =8, 20 (mod 29) .
(b) This time we are asked to solve 51° + 9z +4 = O(mod 101). Again using the
above derived formula with a =5,b=9,c=4:
y=2az+b=10z4+9, m = b —4ac:81—(4><5><4):1.
Using y° = m(mod 101) gives
Y = 1(mod 101) = y= :l:l(mod 101).
Thus, we need to solve 10z +9 = 1(mod 101) = 10z = —8 = 93(mod 101).

We can rewrite the last congruence as a linear Diophantine equation:
10z = 93 (mod 101) — 10z =93 +10ly = 10z — 101y = 93
10 and 101 are relatively prime so we can solve
10z —-10ly =1 = z=-10, y=—1
10z =101y =93 = z=-930, y =-93
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Therefore z = —930 = 80 (mod 101). One of our solutions is = = 80 (mod 101) .
Similarly computing the other solution for y = —1 =100 (mod 101) :

102 +9 = 100(mod 101) —~ 10z = 91(mod 101)

Writing the equivalent linear Diophantine equation 10x — 101y = 91. We have
10z -10ly=1 = z=-10, y=—1
10z —101ly =91 = 2 =-910, y =-91

Our other solution is z = —910 =100 (mod 101) . The solutions to
507 + 97 +4 = o(mod 101) are = = 80, 100 (mod 101)
(c) We are asked to solve 7z° + 92 + 3 = O(mod 41). Again using the above formula
with a =7,0 =9, c =3 gives
y=2az+b=147+9, m =b" —dac = 81— (4x7x3)=-3.
We need to solve 3 = —3(m0d 41). We first need to check that —3 is a quadratic

residue of 41 by using Euler’s Criterion (7.5):

p—1

a is a quadratic residue of p < a? =1 (mod p)

41-1

Computing (—3) 2 = (—3)20 =z (mod 41). Evaluating simpler powers of —3:

(-3) =81=40=-1 (mod 41).

Therefore, using this we have

o = =

Hence by Euler’s Criterion we conclude that y° = —3(mod 41) has no solutions so

(—3)4]5 = (~1)' =1 (mod 41).

there are no solutions to the given equation 72> + 9z + 3 = O(mod 41).

(d) We need to solve 2z* + 20z + 49 = O(mod 61).
Substituting @ =2, b =20, c =49 into y = 2ax + b = 4z + 20 and
m =20 —(4x2x49) = 8.
We need to solve y° = S(mod 61). We first need to check that 8 is a quadratic

residue of 61 by using Euler’s Criterion (7.5):

E
a is a quadratic residue of p < a? =1 (mod p)
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61-1

Computing 8 2 =8% =g (mod 61). Computing powers of 8:
8" =64 = 3 (mod 61) and 3' = (32)2 = 9" = 81=20(mod 61).
We use this result 3' = 20(mod 61) to evaluate 8" =z (mod 61).
8% = (8) =3 =(3') x3 =20° x21
= 20" x20x 27 = 34 x 52 = 1768 = 60 = — 1 mod 61)

By Euler’s criterion we know 8 is a quadratic non residue so there is no solution to

Y = 8(m0d 61) which implies 2z° + 20z + 49 = O(mod 61) has no solutions.

p—1

We need to prove that a > = +£1 (mod p) provided p/a. How?
We use Fermat’s Little Theorem (4.1):
n'=1 (mod p)

Proof.
p-1
Let t =a ? then

2
-1
= [a 2 ] =a"' =1 (mod p) [By Fermat's Little Theorem

Now using Lemma (4.3):
=1 (modp) & =41 (modp)

p—1

We have z = +1 (mod p) . Therefore z = a *

+1 (modp

~—

. This completes our

proof.

We need to prove that if a is a quadratic residue of p then a is not a primitive root
of p.
Proof.

Let a be a quadratic residue of p. By Euler’s Criterion we have

p—1

a? =1 (mod p)
Suppose a is a primitive root of p. By the definition of the primitive root (6.10):
If gcd(a, n) =1 and a has order gb(n) then the integer a is called the primitive

root of the integer n.
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In our case we are dealing with primes p so ¢ ( p) = p—1. Since a is a primitive

-1
root so a ? }:Z 1 (mod p) . This is a contradiction because from above we have

p—1

a? =1 (mod p) . Hence our supposition a is a primitive root of p must be wrong so

a is not a primitive root of p.

[
(a) We need to prove the product of two quadratic non-residues is a quadratic
residue.
Proof.
Let a and b both be quadratic non — residues of p. By Euler’s Criterion we have
p-tL -l
a? =-1 (mod p) and b2 =-1 (mod p).
Multiplying these together gives
plopol
a?b? = (—1)(—1) (mod p)
p-1
(ab) =1 (mod p)
E
Since (ab) =1 (mod p) so ab is a quadratic residue of p. This completes our
proof.
[

(b) This time we need to prove the product of a quadratic residue and quadratic
non-residue is a quadratic non — residue.
Proof.

Let a be a quadratic residue and b be a quadratic non — residues of p. We have

0" =1(mod p) and b = —1mod p),
Multiplying these together gives
JTh = 1(-1) (mod p)
(ab)pl =1 (mod p)
Therefore (ab)le =1 (mod p) implies that ab is a quadratic non - residue of p.

Hence the product of a quadratic residue and quadratic non-residue is a quadratic

non — residue.
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(c) We are required to prove that the square of a quadratic residue of p is a
quadratic residue.

Proof.

By 2° =ad’ (mod p) &S = ia(mod p) which completes our proof.

We are asked to show that if a is a quadratic residue modulo p where

p= 3(m0d 4) then the quadratic congruence z° = a(mod p) has the solutions
E

r==a? (mod p).

Proof.

We are given that a is a quadratic residue modulo p so by Euler’s Criterion (7.5):

p—1

a is a quadratic residue of p < a? =1 (mod p)
-1
We have a 2 =1 (mod p) . Multiplying this by a gives
-t 121 ptl
axa?® =a * =a? Eazxz(modp) (*)

We are also given that p = 3(m0d 4) which implies p = 3 4+ 4k . Therefore we can

write the above index as

p+1 3+4k+1
2 2

2(k+1).

Substituting this p ;_ L Q(k + 1) into (*) yields

ptl
2 2

az(k+1) - (ak+1)2 (mod p) .

2
We have z° = (a“l) (mod p|]. By Proposition (3.14) (b):

~—~—

=0 (mod p) & a=4b (mod p)

2
Applying this to z° = (ak“) (mod p) implies z = +a"" (mod p) . From above we
have p = 3 + 4k which implies that

p_P—3 p—3

P = b= _ptl

4

+1

p+1

Substituting this £ +1 = into = = +a"" (mod p) gives us our result:

p+1

z=+a* (mod p)
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This completes our proof.
[

(a) We need to solve z° = 3(m0d 83). First, we need to establish whether 3 is a

quadratic residue modulo 83. How?

Use Euler’s Criterion with a = 3, p = 83:

83—1

32 =3"= x(mod 83) :
We need to find z where z is the least positive residue. From the powers of 3:
3' = 81=—2(mod 83).
Using this result we have
3" =3"%x3= (34)10 X3 = (—2)10 x3=1024x3=28x3=84= 1(mod 83)

Hence 3 is a quadratic residue modulo 83. Since 83 = 3(m0d 4) so we can use the

jaat
result proven above which says that * = +a 2 (mod p):

sl ; ;
r=43 1 5132151(34) x 3 E:t[(—2) 3

= +[-32x 3] = £[-96] = £(~13) = £70 (mod 83)

Hence, we have the solutions z = 13, 70(mod 83) .

(b)  We are asked to solve 2° = 2(mod (213 — 1)) First we check that 2 is a

quadratic residue modulo 2" —1. By Euler’s Criterion we need to find z in

211

2 2 524095Ex(m0d213—1).

Clearly by the definition of congruence we have
o1 = 1(mod (27 - 1)) ()
Also 13 x 315 = 4095 therefore 2% = 1(m0d 21 — 1) which implies that 2 is a

quadratic residue modulo 2" —1. Additionally, 2" —1= S(mod 4) which means we

can use the above result that we proved. Substituting ¢ =2 and p =2" —1
p+1

into z =4a * (mod p) yields

2B 141 21

=492 4 =492 = 492 — L9288 (mod 13 _ 1)'

We want to use () which means we need to write the index of 2048 as a multiple of
13 and any remainder:

2048 = (157 X 13) +7.

Therefore, we have
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r = 4275 = 497 = 1128 = 128, 8063(mod 9 _ 1).
(c)  We need to solve z° = 5(m0d 127). Again, we first test whether 5 is a

quadratic residue modulo 127 by using Euler’s Criterion:

127-1

5 2 5563Ex(m0d 127).

We can use 5° =125 = —2(m0d 127

~—

and 2" =128 = 1(mod 27). Combining these

we have

503 — 52 — (53)21

(—2)21 = (1) 9™ = (~1)x () = —1(mod 127).
zl(m%)

Therefore by Euler’s Criterion we conclude that 5 is a quadratic non — residue

modulo 127 which implies that 2> = 5(m0d 127) has no solutions.

We are asked to prove that the multiplicative inverse of a quadratic residue of p is
also a quadratic residue of p.

Proof.

Let a be a quadratic residue of p so by Euler’s Criterion we have

-1
a? =1 (mod p) (1)
Let b be the multiplicative inverse of @ modulo p. This implies
ab=1 (mod p) (*)
=
We need to prove that b 2 =1 (mod p). Taking the congruence in (*) to the power
p— .
—— gives
2 g
pl p1 pl p-l
(ab) =g’ b? =b7 El(modp).
=1 Emod p)
by (1)
=
Hence we have b 2 =1 (mod p) so by Euler’s Criterion we conclude that b is a

quadratic residue of p. So the multiplicative inverse of a quadratic residue is also a

quadratic residue of p.



