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Complete Solutions to Exercise 4.2

1. In each case we use Wilson’s Theorem because 11 is prime.

(a) Wilson’s Theorem is:
(p—1)t=-1 (modp)
Since 11 is prime so we have
10!=—1=10 (mod 11]
Therefore x =10 (mod 11).
(b) Again using Wilson’s Theorem on the given 101+ 10! = » (mod 11):
1014101 = ~1+(~1) = ~2= 9 (mod 11]
Hence 101+ 10! = 9 (mod 11).
(c) We are given 10(10!)+8(10!) =z (mod 11). Substituting
10!= -1 (mod 11) into this gives
10(10!) + 8(10!) = 10(—1) + 8(-1)
= —18 = -7 =4(mod 11
We have 10(10!) + 8(10!) = 4 (mod 11}

101

(d) We need to find x in the following 5(10!) + 3(10!)100 =z (mod 11).

Using 10! = -1 (mod 11) in this gives

100 1 100

5100 +3(101)" =5(-1)" +3(-1)
=5(-1)+3(1)=-2= 9(mod 11)

100

Therefore 5(101)" +3(101)" =9 (mod 11).

2. We are required to find the remainder when 15! is divided by 17. We use

Wilson’s Theorem:
(p — 1)! =-1 (modp)
Since 17 is prime so substituting p = 17 into this formula gives
16!=—1 (mod17)
We can rewrite 16! as 16 x 15!:

16x15!=—1 (mod17)  (f)
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The inverse of 16 = —1 (mod 17) is —1= 16(mod 17) because
(— 1)2 =1 (mod 17) . Multiplying both sides of () by —1 gives
—1x16x15!=—1x(-1)=1 (mod17)
=1

Therefore 15! =1 (modl?). The remainder is 1 after 15! has been divided by
17.

. For this we don’t need to apply Wilson’s Theorem because

25! =1x2x3x---x17x---x25
Since 25! contains a multiple of 17 so 25! =0 (mod 17) . Therefore the

remainder is 0 after 25! has been divided by 17.

. How can we evaluate xE8><9><10><11><16><17><18><19(mod13) ?

Firstly we need to tame the numbers above 13 as we are working with modulo

13:
16=3 17=4, 18=5 and 1956(m0d13)
Replacing these in the above £ =8 x9x10x11x16x17 x18 x19 (mod 13)

gives
r=8x9x10x11x16x17x18x19
=8x9Ix10x11x3x4x5%x6

=3x4xbx6x8x9x10x11 (mod 13) [Putting numbers into ascending order
Since 13 is prime so each of these numbers a =3, 4, 5, 6, 8, 9, 10 and 11 have

an inverse because gcd(a, 13) — 1. We have
3x9=27=1(mod 13)
410 =40 = 1 (mod 13
5x8=40=1(mod 13)
6x11=66=1(mod 13)

Pairing these numbers up so that the product is congruent to 1 modulo 13 we

have
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T=3Xx4x5x6x8x9x10x11

=3x9Ix4x10xbx8x6x11
—— ——— —— —
= =1 =1 =1

Elxllxlxlzl(modl?))

Hence x = 1(mod 13) )

. We need to find x =2 x (20!) (mod 23). Since 23 is prime we have
22!= —1 (mod 23)

We can rewrite 22! as 22 x 21 x 20! Using this in the calculation of 20! gives
22!=22x21x20! = ~1 (mod 23) (*)
Note that 22 = —1 (mod 23) . Substituting this 22 = —1 (mod 23) into (*)
yields
(~1)x21x20! = —1 (mod 23]
Multiplying this by —1 gives
21x20! =1 mod 23]

We have 21 = —2 (mod 23) and —2x11=-22=1 (mod 23). This implies
that 11 (mod 23) is the inverse of 21 (mod 23) because
21x11= —2x11 =1 (mod 23]
Multiplying both sides of 21 x20! =1 (mod 23) by 11 gives
20!=11 (mod 23]
Substituting 20! =11 (mod 23) into the given congruence:
1=2x(20)=2x11=22= —1 (mod 23)

Hence z = —1 (mod 23) )

. We need to find x such that 96 x 97 x 98 x 99 x 100 = = (mod 101). Writing

these numbers as negative residues modulo 101 gives
T =96 %97 x98 x99 x 100

= (=5) x (—4)x (=3) x (—2)x(-1)

= _120=-19= 82(mod 101)

Therefore r = 82 (mod 101) .
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7. We need to find 61! (mod 71). Since 71 is prime so by Wilson’s Theorem we

have
700 = —1 (mod 71)

We can rewrite this as
70! = 611x 62 x - x 69 x 70 = —1 (mod 71)

Writing each of these numbers 62, 63, ---, 69 and 70 as negative least residues

modulo 71 in a list:
62=-9, 63=-8 64=-T, 65=—6, 66=—5 67=—4,
68=-3, 69=-2 and 70=—1 (mod 71)

Multiplying the first two numbers in this list gives
6263 = ~9x ~8 =72 =1(mod 71) (*)

Combining other numbers in the list:
(**)

65 % 67 % 68 = —6x (—4)x (~3) = ~72= ~1 (mod 71)
We are only left with 64, 66, 69 and 70 from the list:
64 x 66 % 69 x 70 = (—7) x (=5 x (~2) x (1)
=70=-1 (mod 71) (**)

Substituting each of these results (*), (**) and (***):
62 63 =1, 6567 x68=—1 and 64x66x69x70 = —1mod 71]

into 701 = 61x 62 x -+ x 69 x 70 = —1 (mod 71) gives:
701 = (61)1x 1x (1) x (~1) = 611 = 1 (mod 71)

Hence 61!'=—-1=70 (mod 71).

8. (a) We need to evaluate (n - 1)! (mod n) for n =15:

(15—1)1 = 14!

=1x2x3x---x14
3x5 ><1><2><4><6><---><14E()(m0d15>
——

=0 (mod 15)

We have (15 — 1)! =0 (mod 15).

(b) Similarly we have to evaluate (n - 1)! (mod n) for n =21:
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(21— 1)1 = 20!
=1x2x3x---x20
= 3x7 ><1><2><4><---><6><8><---><2()E0(m0d21)
—<—

=0 (mod 21)
Therefore (21 — 1)! = (mod 21).
(c) Repeating the above calculations for n = 30 we have
(30— 1)1 = 29!
=1x2x3x---x29
= 2x3x5X1x4X6x7 %29 = 0 (mod 30)
—

=0 (mod 30)
We have (30 —1)! = 0 (mod 30).
In each case n is composite and we can always find the factors of this number

between 1 and n —1 therefore (n — 1)! =0 (mod n) (See question 10.)

9. We are required to find

(29-1)

(201
! (mod 29). Simplifying 5~ 14 and

now finding 14 factorial modulo 29 gives

14!E2><3><5><(4><7>><(6><10)><(11><13>><<8><14>><(9><12>

=30=1

B E?SYE—I 26652 214?:2—2 5115274 2108Y£78
=1x (—1) X 2 X (—2) X (—4l>:_£—8)

= 1x(~1)x2x(~2)x 3 =12(mod 29)

(20 -1)

2
Evaluating [ ]! =12°=144=-1=28 (mod 29).

10. We are asked to prove:
-1 (mod n) if n is prime
(n—l)!z 2(m0dn) ifn=4
O(mod n) for all other cases
Proof.

Clearly if n is prime by Wilson’s Theorem we have
(n — 1)! = —1(mod n)
If n =4 then



11.

12.
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(4—1)! =3l=6= Q(mod 4)
We have our result for n =4.
For all other cases n must be composite because either n is prime or composite
and we have already covered the case when n is prime. Let n = d xd, where
d, and d, are non-trivial factors of n, that is 1 <d <n and 1<d, <n.
Evaluating (n — 1)!(mod n) gives
(n —1)! = (d1 X d, —1)!

=1x2x--Xd, ><(d1 —|—1)><-~-><d2 ><~-~><(d1 X d, —1)

=d, xd, ><1><2><~-«><(d1 X d, —1)

= 0 x1x2x-+x(d, xd, ~1) = 0(mod d, xd,

Because d, xd, EU(mOd d, xd, )

Hence for all composite numbers n apart from 4 we have
(n —1)! = O(mod n)

This completes our proof.

We are asked to show that z> =1 (mod n) /4 z =41 (mod n) This will

work for any composite n. Consider n = 15 then
=1 (mod 15)
Let z = 4 then we have

r=4=16=1 (mod 15)
Hence a solution to z° =1 (mod 15) is x = 4/1g + 1(m0d 15).

We only have z° =1 (mod n) = r==1 (mod n) if n is prime.

Proof.
We are given that p is prime and gcd (n, p) =1 so by FIT (4.1):
nt=1 (mod p)
We have n’' =1 (mod p). Again as p is prime by Wilson’s Theorem we have
(p —1)! =-—1 (mod p)
Putting both these "' =1 (mod p) and (p — 1)! =-1 (mod p) into

<p — 1)!+ n”" yields



13.

14.

15.
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(p—l)!+ nlt=—141=0 (mod p)

We have our required result. This means prime p divides (p — 1)!+ n’'.

We are required to prove that (p — 2)! =1 (mod p).

Proof.
Let p be prime. By Wilson’s Theorem we have

(p-1)1=-1 (mod p)
Rewriting (p —1)! = (p —1)(p —2)! and substituting this into the above gives
(p-1)(p—2)1=-1 (mod p).
Note that p—1=—1 (mod p). Substituting this into the above line gives
() -2) =1 moc 5
(p—2)1=1 (mod p) [Multiplying by — 1

We have ( D — 2)! =1 (mod p) which is our required result.

We need to prove 2(]9 — 3)! =-1 (mod p) . How?

Using the result of previous question.

Proof.
By previous question we have (p — 2)! = (mod p). Rewriting (p — 2)! as
follows:
(p—2)'=(p-2)(p-3)=1
Note that p—2= —2 (mod p). Putting this into the above result gives
(725 = (-2llp- )1 =1 (mot
Multiplying both sides by —1:
2(p — 3)! =-1 (mod p)

This 2(p — 3)! =-1 (mod p) is the result we needed to prove.

We need to show that (p — 1>(p — 2)---(p — n) = (—1)71 n!
Proof.



16.
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(p—l)x(p—2)><---><(p—n)E(—l)x(—2>><(—3>><---><<—n>
(—1)’”[1><2><3><---><n]
(1) !

We are required to prove that 2° +1 = O(mod p) has a solution
&S p=2 orpzl(m0d4).
Proof.
We divide the proof into two parts; p =2 and p = 1(m0d 4).
If p =2 then
7 +1=0 = 2°=-1(mod2) = o= +1(mod?2).
Now we consider the case p = 1(m0d 4).
(:) Since p is an odd prime it can only be of the form
pzl(mod 4) or pE?)(mod 4).

Suppose 72 +1= o(mod p) has a solution, z = a say. From this we have
ceofws)
By (1) we have p }/a because if p‘ @ then
o= o(mod p) - =0 = o(mod p)
By FIT we have o’ =1 (mod p). Using these two results, a® = —1(mod p)

and "' =1 (mod p) , gives

p=1

1z =017 = (@)

pl 1
2

(1) (mods) @

{1

by

=
—
—+

)
If p=3 (mod 4) then 2 2_ 1 is odd. Why?

Because we have p =3 (mod 4) which implies

p = 3 + 4k for some integer k.

Substituting this p = 3 4+ 4k into P

gives

p—1 3+4k—1 4k+2
2 2

=2k+1
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p_

Hence

1 = 2k + 1 implies that P 2_ L is odd.

p—1

Therefore (—1)7 = (—1 )Odd e = —1(mod p). We have a contradiction

p—1

because from (1) we have o’ = (—1)T =-1 (mod p) but FIT says
a”' = +1 (mod p)
We are given that p is an odd prime so p}:z?) (mod 4).
Therefore p =1 (mod 4).
(<:). Assumep =1 (mod 4). We need to show that there is a residue x such

that 2° +1= O(mod p) or ° = —1(m0d p). If we can find such an x then we
will have proven this part (<) as well. We will find an z such that
= —1(mod p)
Since we are interested in residue —1 so we use Wilson’s Theorem:
(p—l)!z—l(mod p) (1)
We can rewrite (p — 1)! as

p+1
2

p—1
2

(p—1)l=1x2x3x-x x

><~-~><<p—2>><(p—1> (*)
Note that
p—lz—l(modp)

p—25—2(modp)

p—1
2

p+1
2

o

Substituting these into (*) and working with modulo p gives

(P—l)!51><2><3><~->< p2—1 X p;_l]x-«'x(p—Z)x@O—l)
=1Xx2Xx3x%-X p—b) _p;l ><---><(—2)><(—1)
5 Px22x 3 x--- X p—1 2

2=, (mod p) (1)




17.
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All this is congruent to —1 (mod p) because of (1). Equating these gives

p-l 2

e P2y = Kok
()= 55 = 1(mod p| (%)
-1
Let 2 = |[2Z——|! then we can rewrite (**) as
-1
(—1) 2 2t = —1(mod p) (F**)
We only now need to show that for the appropriate prime p that
p-1
7 =

For this part we are assuming that p =1 (mod 4) so p = 4k + 1. Substituting

—1 p—1_ 4k+1-1

this p = 4k + 1 into P gives

=2k [even]. Hence

p—1

<—1)7 = +1 so substituting this into (***) yields

|
—_
~—
:
8
N
I
_.I_
—_
S
[N}
Il

i —l(mod p)
—1
Therefore we have found a solution z = [pT]' such that z° = —1(m0d p) or

1= O(mod p). This completes our proof.

We are asked to prove Wilson’s Theorem ( D — 1)! =-1 (mod p) by using FIT.
Proof.
For the even prime 2 we have (2 — 1)! =1= —1(mod 2). The result holds for
p=2.
Let p be an odd prime such that it does not divide z. Then by FIT we have
= l(mod p)
Rewriting this as
o —1= O(mod p) (*)
By FIT the solutions to this are x =1, 2, 3, 4, ---, p — 1. Therefore factorizing
(*) gives
T —1= (a:—l)(a: —2)---($ —(p —1)) = O(mod p)

Substituting £ = 0 into this yields
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0—1= <0—1)<O—2)~~(0—(p—1))

1= ()2 (1)
= = ()

There are p—l=even
minuses

= (p — 1)!(m0d p)

Hence we have our result.

p+1

18. We need to prove (1><3><5><---><<p —2))2 = (—1) 2 (mod p).

Proof.
Consider the left-hand-side residue without the square:
1><3><5><-~~><(p—2)51><3><--->< p;5 X p2—1 X p—2&-3 X p—2k7 X ><(p—4)><<p—2)
—1x3xeex |22 x{pgl x|p p;S X p—p;7]>< ><(p—4)><(p—2)
=1x3x--X P=5 X p-1 X —p_g]x p-T X ~(—4)><(—2>
2 2 2 2
-5 ~1 -3 -7
= 1 [ 2 ) 22 ) - 22 ] A (-1)(4)x (- 1)(2)
Squaring both sides of this because we are given ( X3x5Hx- — 2))2
2
(1><3><5><~~><(p—2))25 IX 3% x p;5 X p;l ><( 1)[1)23] ( 1) p;7]x x(l)(4)x(1)(2)]
2
-5 ~1 -3 —7 2
= 1><3><~~><[p2 ]x{pQ x[p2 p2 X ><<4>><<2)] ((—1)>< x(fl))
2
= 1><3><-~-><[p5 x[pl x[p3 2= ><4><(2)
2 2 2 2
2
=|1x2x3x4x---X p—7]><[p—5]x p—3 X p—l]]
2 2 2 2
,
= pTl],] (modp) (* Because 1 x2x---x p23]>< p21]:[p21 !

From the calculation of question 16 (1) we have

2
(o= (0 |2 fmoar) et
By Wilson’s Theorem we have
(p —1)! =-1 (mod p).

Equating these last two equations gives

p—l
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p—1

(—1)7 pT—l N = —l(mod p)
-1 p—1 ’ -1
Multiplying both sides of this (—1) 2 - I =—1by (—1) 2 yields
_ _ 2 _ 2
7 0 2] =t
=1
= (—1 1(—1>%1 = (_1)1+p;1 =(-1 pf(mod p)
We have
2 1
pT—l ! (—1)?7; (mod p)

Putting this into (*) yields

(1><3><5><---><(p—2))25

This completes our proof.



