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Complete Solutions to Exercise 7.1 
 

1. In each case we create a table and then plot the appropriate graph: 
(a) We are given 5p   so our least positive residues are 1, 2, 3x   and 4: 

x 1 2 3 4 

 2 mod 5x   1 4 4 1 

Plotting this graph gives 

 
As we can see from the graph and table there is no solution to  2 2 mod 5x  . 

Therefore, we cannot solve the Diophantine equation 2 2 5x y  . 
(b) This time 17p   so our table is  
x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 2 mod 17x   1 4 9 16 8 2 15 13 13 15 2 8 16 9 4 1 

Plotting the graph: 

 
Using the above graph or table we have 

 2 2 mod 5x   

 

 2 2 mod 17x   
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     2 2 mod 17 6 mod 17    and  11 mod 17x x x      

Now we need to solve the Diophantine equation  
2 2 17x y  . 

Substituting the simplest of these solutions for x we have 6, 11x x   gives 

2 36 26 2 17 2
17

y y       

2 121 211 2 17 7
17

y y       

Our solutions are  6, 2x y    and  11, 7x y  . 

(c) Similarly for 19p   we have: 

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

 2 mod 19x   1 4 9 16 6 17 11 7 5 5 7 11 17 6 16 9 4 1 

Plotting this graph gives: 

 
As we can see from the graph and table that there are no solutions to 

 2 2 mod 19x  . 

Hence the Diophantine equation 2 2 19x y   has no solutions. 
 

2. In each case we use the Proposition (7.4): 

1
2

p   quadratic residues. 

(a) Substituting 1223p   into this formula gives that there are  

 2 2 mod 19x   
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1223 1 611
2
   quadratic residues of 1223. 

(b) Similarly, there are exactly 3571 1 1785
2
   quadratic residues of 3571. 

(c) Also, there are 104 729 1 52 364
2

   quadratic residues of 104 729. 

(d) Repeating this we have 179 424 673 1 89 712 336
2

   quadratic residues of  

179 424 673. 

 
3. We need to use Euler’s Criterion (7.5) to determine whether the given residues are 

quadratic residues: 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   

We are given the prime 37p   so 1 37 1 18
2 2

p    . 

(a) In this case we need to evaluate  186 mod 37 . We have 

 26 36 1 mod 37  . 

Therefore using the rules of indices we have 

     9 918 26 6 1 1 mod 37    . 

Since  186 1 mod 37  so by Euler’s Criterion, 6 is a quadratic non-residue of 37. 

(b) Similarly, we need to find the least positive residue of  182 mod 37 . Evaluating 

a simple power of 2 gives 

 52 32 5 mod 37  .  

Writing the index 18 as a multiple of 5 plus any remainder we have 

 18 3 5 3   . 

Therefore, we have 
   

   
33 5 318 5 3

3

2 2 2 2

5 8 125 8 14 8 112 1 mod 37

   

           
  

Since  182 1 mod 37  so 2 is a quadratic non-residue of 37. 

(c) This time we need to evaluate  1812 mod 37 . First we find  212 mod 37 : 

 212 144 4 mod 37    
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Evaluating powers of 4 : 

   2
4 16 mod 37    

     3
4 64 10 10 mod 37         

   4
4 4 10 40 3 mod 37          

Since 3  is a smaller number let us use this result;    4
4 3 mod 37   . We have 

   
   
         

9 918 2

8

24 2

12 12 4

4 4

4 4 3 4 36 1 mod 37

  

   
             

  

Hence 12 is a quadratic residue of 37 because  1812 1 mod 37 . 

(d) We need to find the least positive residue of  185 mod 37 . Finding a simpler 

index of 5: 

 25 25 12 mod 37  .       

We have 

     9 918 25 5 12 mod 37     (*) 

For the residue 12  we can use the results of part (c).  

     
   
         

9 8

42

4

12 12 12

12 12

4 12 3 12 36 1 mod 37

    

  

          

  

Using this result in (*) gives 

   9185 12 1 mod 37    . 

Hence 5 is a quadratic non-residue of 37. 
 

4. To find the square root of  moda p  means we need to solve  2 modx a p . 

We need to first determine if the given residues are quadratic residues. How? 
By using Euler’s Criterion (7.5): 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   

In each case 17p   so 1 17 1 8
2 2

p    .  
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(a) We first need to find the least positive residue of  82 mod 17 . Well we have 

 42 16 1 mod 17  . 

Therefore 

     2 28 42 2 1 1 mod 17      

By Euler’s Criterion, 2 is a quadratic residue of 17 because  82 1 mod 17 . This 

means that  2 2 mod 17x   has solutions. Squaring 1, 2, 3, 4, 5x   does not give 

2 modulo 17. Squaring 6x   gives 

 26 36 2 mod 17    

Hence  6 mod 17x   is one solution. By Proposition (3.14) (b): 

 2 2 moda b p     moda b p   

We have the two solutions given by: 

 2 26 6 6, 6 6, 11 mod 17x x       . 

The two square roots of  2 mod 17  are  6, 11 mod 17x  . 

(b) We have been given  2 16 mod 17x  . Note that 

 2 216 4 mod 17x   . 

We have 

 2 24 4 4, 4 4, 13 mod 17x x       . 

Square roots of  16 mod 17  are  4,13 mod 17x  . 

(c) This time we are given  2 5 mod 17x  . Again, we first test to see if there are 

solutions. We need to find the least positive residue of  85 mod 17 : 

 25 25 8 mod 17  . 

Remember 38 2  so  

       4 4 38 2 4 3 45 5 8 2 2 mod 17      (*) 

Recall (from part(a)) that  42 1 mod 17 . Substituting this into (*) yields 

     3 38 45 2 1 1 mod 17    .  

Since  85 1 mod 17  so 5 is a quadratic non-residue which implies  

 2 5 mod 17x   has no solutions. 
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The square roots of  5 mod 17  do not exist. 

 
5. In each case we need to complete the square on the given residues. 

(a) We need to solve  2 2 2 0 mod 23x x   . Completing the square, we have 

   22 22 2 2 1 1 1 1 0 mod 23x x x x x          . 

Subtracting 1 from both sides gives 

   2
1 1 mod 23x    . 

Let 1y x   then we need to solve  2 1 mod 23y  .  

The prime p is 23 so we first need to find  

       
1 23 1 11

2 21 1 1 1 mod 23
p 

      .  

This means there are no solutions to    2
1 1 mod 23y x     so there are no 

solutions to the given congruence  2 2 2 0 mod 23x x   . 

(b) Now we need to solve the quadratic congruence  2 4 2 0 mod 23x x   . 

Completing the square gives 

 
   

2

22 2

2

4 2 4 4 2 2 2 0 mod 23
x

x x x x x
 

          .  

Adding 2 to both sides yields 

   2
2 2 mod 23x   . 

Let 2y x   so we need to solve the quadratic congruence  

 2 2 mod 23y  . 

First, we need to see if 2 is a quadratic residue of 23 by applying Euler’s Criterion. 

This means we must find the least positive residue of   112 mod 23 .  

Evaluating some simple powers of 2: 

 52 32 9 mod 23  ,  62 64 5 mod 23    

We have 

 11 6 5 6 52 2 2 2 5 9 45 22 1 mod 23          

Hence, we have solutions to  2 2 mod 23y  . We have two solutions to this 

quadratic congruence. Trying 5y   gives 

 25 25 2 mod 23  .  
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We need to find the other solution which is given by  5 18 mod 23  . 

We have the solutions  5 mod 23y   and  18 mod 23y  . Remember we need to 

find x where 2y x  . Subtracting 2 from both these congruences gives 

   2 5 mod 23 3 mod 23x x      

   2 18 mod 23 16 mod 23x x      

The two solutions to the given congruence  2 4 2 0 mod 23x x    are 

 3, 16 mod 23x    

(c) We are required to solve  2 6 5 0 mod 23x x   . Completing the square gives 

   
2 2

2

6 5 6 9 4

3 4 0 mod 23

x x x x

x

     

   
  

Adding 4 to both sides yields 

   2
3 4 mod 23x     

Let 3y x   so we must solve  2 4 mod 23y  . Clearly trying 2y   is going to 

work because  22 4 mod 23 . Hence one of the solutions is  2 mod 23y  . We 

need to find the other solution. Therefore 

 2 2, 2 2, 21 mod 23y      . 

Hence, we have  2 mod 23y   and  21 mod 23y  . Substituting 3y x   gives 

   3 2 mod 23 1 22 mod 23x x       

   3 21 mod 23 18 mod 23x x      

Our two solutions to  2 6 5 0 mod 23x x    are  18, 22 mod 23x  . 

 
6. We need to prove that 1  is a quadratic residue of an odd prime p 

 1 mod 4p  . 

Proof. 

  . Let  1 mod 4p   so 1 4p k   where k is an integer. Using Euler’s 

Criterion (7.5): 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   

Applying this with 1a    gives 



       Complete solutions to 7.1   Page 8 of 16  
 

       
1 4 1 1 2

2 21 1 1 1 mod
p k k

p
  

        

Hence 1  is a quadratic residue of p. 

  . Let 1  be a quadratic residue of p. By Euler’s Criterion we have 

   
1

21 1 mod
p

p


  . 

This implies that 1
2

p   must be even or 1 2
2

p m   where m is an integer. Making 

p the subject of the formula gives 1 4p m   which implies  1 mod 4p  .  

This completes our proof. 
■ 

 
7. (a) We are required to prove that if a is a quadratic residue then p a  is a 

quadratic residue    1 mod 4p  . 

Proof. 
This is very similar to the proof of the previous question. 

  . Let  1 mod 4p   so 1 4p k   where k is an integer. Using Euler’s 

Criterion (7.5): 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   

Applying this  

   
      

1 1
2 2

1 1 11 4 1 1
2 2 22 2

Because is a 
1 quadratic residue of 

1 1 1 mod

p p

p p pp k

a
p

p a a

a a a p

 

    



  

     


  

By Euler’s Criterion p a  is a quadratic residue of p. 

  . Let p a  be a quadratic residue of p. By Euler’s Criterion we have 

   
 
 
 

1 1
2 2

11
22

1
2

1
2

1

1 1 Because  is a quadratic residue

1 1 Because  is a quadratic residue

p p

pp

p

p

p a a

a

a

p a

 







  

 

     
      

  

This implies that 1
2

p   must be even or 1 2
2

p m   where m is an integer. Making 

p the subject of the formula gives 1 4p m   which implies  1 mod 4p  .  
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This completes our proof. 
■ 

(b) In this case we need to prove: 

 If a is a quadratic residue then p a  is a quadratic non-residue    3 mod 4p  . 

 Proof. 

  . Let  3 mod 4p   so 3 4p k   where k is an integer. Using Euler’s 

Criterion (7.5): 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   

Applying this  

   
 
 
      

1 1
2 2

11
22

14 3 1
22

12 1
2

Because is a 
quadratic residue of 

1

1

1 1 1 1 mod

p p

pp

pk

pk

a
p

p a a

a

a

a p

 



 



  

 

 

    

  

By Euler’s Criterion p a  is a quadratic non-residue of  p. 

  . Let p a  be a quadratic non- residue of p. By Euler’s Criterion we have 

   
 
 
 

1 1
2 2

11
22

1
2

1
2

1

1 1 Because  is a quadratic residue

1 1 Because  is a quadratic non-residue

p p

pp

p

p

p a a

a

a

p a

 







  

 

     
       

  

This implies that 1
2

p   must be odd or 1 2 1
2

p m    where m is an integer. 

Making p the subject of the formula gives  
1 4 2 4 3p m p m        

which gives  3 mod 4p  . 

This completes our proof. 
■ 

 

8. We need to show that  2 0 modax bx c p    where p a  can be written as 

 2 mody m p . 
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Proof. 
Multiply both sides of the given quadratic congruence by 4a  yields 

 2 24 4 4 0 moda x abx ac p   . 

Completing the square on this gives 

 
   

22 2 2

2 2

4 4 4 2 4

2 4 mod

a x abx ac ax b ac b

ax b b ac p

     

   
 

Let 2y ax b   then  22 2y ax b   and let 2 4m b ac  . 

We have  2 mody m p .  

■ 
We solve each of the given quadratic congruences using the above established 
formula. 

(a) We are given  22 2 1 0 mod 29x x    so substituting 2, 2, 1a b c     

into 2 4 2y ax b x     and  2 4 4 4 2 1 4m b ac         yields 

   2 4 mod 29 25 mod 29y   . 

This  2 225 5 mod 29y    implies  5 5, 24 mod 29y    . We have 

 
 

4 2 5 4 3 8 mod 29

4 2 24 4 22 20 mod 29

y x x x

y x x x

      

      
 

Our solutions are  8, 20 mod 29x  . 

(b) This time we are asked to solve  25 9 4 0 mod 101x x   . Again using the 

above derived formula with 5, 9, 4a b c   : 

2 10 9y ax b x    ,  2 4 81 4 5 4 1m b ac       . 

Using  2 mod 101y m  gives 

   2 1 mod 101 1 mod 101y y    . 

Thus, we need to solve    10 9 1 mod 101 10 8 93 mod 101x x     .  

We can rewrite the last congruence as a linear Diophantine equation: 

 10 93 mod 101 10 93 101 10 101 93x x y x y        

10 and 101 are relatively prime so we can solve  
10 101 1 10, 1x y x y      

10 101 93 930, 93x y x y      
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Therefore  930 80 mod 101x   . One of our solutions is  80 mod 101x  . 

Similarly computing the other solution for  1 100 mod 101y   : 

   10 9 100 mod 101 10 91 mod 101x x     

Writing the equivalent linear Diophantine equation 10 101 91x y  . We have 
10 101 1 10, 1x y x y      

10 101 91 910, 91x y x y      

Our other solution is  910 100 mod 101x   . The solutions to  

 25 9 4 0 mod 101x x    are  80, 100 mod 101x   

(c) We are asked to solve  27 9 3 0 mod 41x x   . Again using the above formula 

with 7, 9, 3a b c    gives 

2 14 9y ax b x    ,  2 4 81 4 7 3 3m b ac        . 

We need to solve  2 3 mod 41y  . We first need to check that 3  is a quadratic 

residue of 41 by using Euler’s Criterion (7.5): 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


  

Computing      
41 1 20

23 3 mod 41x


    . Evaluating simpler powers of 3 : 

   4
3 81 40 1 mod 41     . 

Therefore, using this we have  

         
520 4 5 4 5

3 3 3 1 1 mod 41
            

. 

Hence by Euler’s Criterion we conclude that  2 3 mod 41y   has no solutions so 

there are no solutions to the given equation  27 9 3 0 mod 41x x   . 

(d) We need to solve  22 20 49 0 mod 61x x   .  

Substituting 2, 20, 49a b c    into 2 4 20y ax b x     and  

 220 4 2 49 8m      . 

We need to solve  2 8 mod 61y  . We first need to check that 8 is a quadratic 

residue of 61 by using Euler’s Criterion (7.5): 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


  
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Computing  
61 1

3028 8 mod 61x


  . Computing powers of 8: 

 28 64 3 mod 61   and    24 2 23 3 9 81 20 mod 61    . 

We use this result  43 20 mod 61  to evaluate  308 mod 61x . 

   
 

15 330 2 15 4 3 3

2

8 8 3 3 3 20 27

20 20 27 34 52 1768 60 1 mod 61

     
        

 

By Euler’s criterion we know 8 is a quadratic non residue so there is no solution to 

 2 8 mod 61y   which implies  22 20 49 0 mod 61x x    has no solutions. 

 

9. We need to prove that  
1

2 1 mod
p

a p


   provided p a . How? 

We use Fermat’s Little Theorem (4.1): 

 1 1 modpn p    

Proof. 

Let 
1

2
p

x a


  then  

 
21

2 12 1 mod By Fermat's Little Theorem
p

px a a p



          

  

Now using Lemma (4.3): 

 2 1 modx p      1 modx p    

We have  1 modx p  . Therefore  
1

2 1 mod
p

x a p


   . This completes our 

proof. 
■ 
 

10. We need to prove that if a is a quadratic residue of p then a is not a primitive root 
of p. 
Proof. 
Let a be a quadratic residue of p. By Euler’s Criterion we have 

 
1

2 1 mod
p

a p


   

Suppose a is a primitive root of p. By the definition of the primitive root (6.10): 

If  gcd , 1a n   and a has order  n  then the integer a is called the primitive 

root of the integer n.  
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In our case we are dealing with primes p so   1p p   . Since a is a primitive 

root so 
1

2
p

a


  1 mod p . This is a contradiction because from above we have 

 
1

2 1 mod
p

a p


 . Hence our supposition a is a primitive root of p must be wrong so 

a is not a primitive root of p. 
■ 

 
11. (a) We need to prove the product of two quadratic non-residues is a quadratic 

residue. 
Proof. 
Let a and b both be quadratic non – residues of p. By Euler’s Criterion we have 

 
1

2 1 mod
p

a p


  and  
1

2 1 mod
p

b p


 .  

Multiplying these together gives  

    
   

1 1
2 2

1
2

1 1 mod

1 mod

p p

p

a b p

ab p

 



  


  

Since    
1

2 1 mod
p

ab p


  so ab is a quadratic residue of p. This completes our 

proof. 
■ 

(b) This time we need to prove the product of a quadratic residue and quadratic 
non-residue is a quadratic non – residue. 
Proof. 
Let a  be a quadratic residue and b be a quadratic non – residues of p. We have 

 
1

2 1 mod
p

a p


  and  
1

2 1 mod
p

b p


 .  

Multiplying these together gives  

   
   

1 1
2 2

1
2

1 1 mod

1 mod

p p

p

a b p

ab p

 



 

 
  

Therefore    
1

2 1 mod
p

ab p


  implies that ab  is a quadratic non - residue of p. 

Hence the product of a quadratic residue and quadratic non-residue is a quadratic 
non – residue. 

■ 
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(c) We are required to prove that the square of a quadratic residue of p is a 
quadratic residue. 
Proof. 

By    2 2 mod modx a p x a p     which completes our proof. 

■ 
 

12. We are asked to show that if a is a quadratic residue modulo p where 

 3 mod 4p   then the quadratic congruence  2 modx a p  has the solutions 

 
1

4 mod
p

x a p


  . 

Proof. 
We are given that a is a quadratic residue modulo p so by Euler’s Criterion (7.5): 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   

We have  
1

2 1 mod
p

a p


 . Multiplying this by a gives 

 
1 1 11 22 2 2 mod

p p p

a a a a a x p
  

      (*) 

We are also given that  3 mod 4p   which implies 3 4p k  . Therefore we can 

write the above index as 

 1 3 4 1 2 1
2 2

p k k     . 

Substituting this  1 2 1
2

p k    into (*) yields 

     
1 22 12 12 mod

p
k kx a a a p


    . 

We have    22 1 modkx a p . By Proposition (3.14) (b): 

 2 2 moda b p     moda b p   

Applying this to    22 1 modkx a p  implies  1 modkx a p  . From above we 

have 3 4p k   which implies that  
3 3 11 1

4 4 4
p p pk k        . 

Substituting this 11
4

pk    into  1 modkx a p   gives us our result: 

 
1

4 mod
p

x a p


   
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This completes our proof. 
■ 

(a) We need to solve  2 3 mod 83x  . First, we need to establish whether 3 is a 

quadratic residue modulo 83. How? 
Use Euler’s Criterion with 3, 83a p  : 

 
83 1

4123 3 mod 83x


  . 

We need to find x where x is the least positive residue. From the powers of 3: 

 43 81 2 mod 83  .  

Using this result we have  

     10 1041 40 43 3 3 3 3 2 3 1024 3 28 3 84 1 mod 83              

Hence 3 is a quadratic residue modulo 83. Since  83 3 mod 4  so we can use the 

result proven above which says that  
1

2 mod
p

x a p


  : 

       
83 1 5 521 443 3 3 3 2 3 32 3 96 13 70 mod 83x
                                             

 

Hence, we have the solutions  13, 70 mod 83x  . 

(b) We are asked to solve   2 132 mod 2 1x   . First we check that 2 is a 

quadratic residue modulo 132 1 . By Euler’s Criterion we need to find x in 

 
132 1 1

4095 1322 2 mod 2 1x
 

   . 

Clearly by the definition of congruence we have  

  13 132 1 mod 2 1    (�) 

Also 13 315 4095   therefore  4095 132 1 mod 2 1   which implies that 2 is a 

quadratic residue modulo 132 1 . Additionally,  132 1 3 mod 4   which means we 

can use the above result that we proved. Substituting 2a   and 132 1p    

into  
1

4 mod
p

x a p


   yields  

 
1313

112
22 1 1

2 2048 134 22 2 2 2 mod 2 1x
 

         . 

We want to use (�) which means we need to write the index of 2048 as a multiple of 
13 and any remainder: 

 2048 157 13 7   . 

Therefore, we have  



       Complete solutions to 7.1   Page 16 of 16  
 

 2048 7 132 2 128 128, 8063 mod 2 1x         . 

(c) We need to solve  2 5 mod 127x  . Again, we first test whether 5 is a 

quadratic residue modulo 127 by using Euler’s Criterion: 

 
127 1

6325 5 mod 127x


  . 

We can use  35 125 2 mod 127   and  72 128 1 mod 27  . Combining these 

we have 

           
 
  21 321 21 7 363 3 21 3 7

1 mod 128

5 5 5 2 1 2 1 2 1 mod 127



            . 

Therefore by Euler’s Criterion we conclude that 5 is a quadratic non – residue 

modulo 127 which implies that  2 5 mod 127x   has no solutions. 

 
13. We are asked to prove that the multiplicative inverse of a quadratic residue of p is 

also a quadratic residue of p. 
Proof. 
Let a be a quadratic residue of p so by Euler’s Criterion we have 

 
1

2 1 mod
p

a p


   (�) 

Let b be the multiplicative inverse of a modulo p. This implies  

 1 modab p   (*) 

We need to prove that  
1

2 1 mod
p

b p


 . Taking the congruence in (*) to the power 

1
2

p   gives 

 
 
 

  
1 1 11

2 2 22

1 mod
by �

1 mod
p p pp

p

ab a b b p
  



   . 

Hence we have  
1

2 1 mod
p

b p


  so by Euler’s Criterion we conclude that b is a 

quadratic residue of p. So the multiplicative inverse of a quadratic residue is also a 
quadratic residue of p. 

■ 
 
 
 


