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Complete Solutions to Miscellaneous Exercises 5 

1. We are given the transformation 

1 2

1
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x x

 
   

   
    

. How do we show that this is 

     T T T  u v u v    T k kTu u

linear? 
Need to show that both  and , where k is a 
scalar, are satisfied. This is definition (5-2).  

Let 
a
b
 

  
 

u and
c
d
 

  
 

v . Then by applying the given transformation we have 

 

5
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2 3

a b
a
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b

a b

 
    

     
     

u and   

5

0
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c d
c
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c d

 
    

     
     

v

Checking      T T T  u v u v :

 

   

   

 

1 2

1

2
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5 5

0 Because 0
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5 5 5 5

0 0 0

2 3 2 3 2 3 2

T

a c
T T

b d

a c
T

b d

a c b d x x
x

T
x

a c b d x x

a b c d a b c d

a b c d a b


    
      

    

   
   

  

        
     

      
            

       
   

  
   
         
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   
3

T
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c d


 
 

 
 
  
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u v

 

Thus we have      T T T  u v u v .

Checking    T k kTu u :

 

 

 
Applying the 
given transformation

5 5

0 0

2 3 2 3

T

a
T k T k

b

ka kb a b
ka

T k kT
kb

ka kb a b


  
   

  

    
      

         
          

u

u

u

This means we have    T k kTu u .

Hence the given transformation is linear because both conditions 

     T T T  u v u v and    T k kTu u

are satisfied. 



Complete Solutions Miscellaneous Exercises 5    2 

2. By taking the transpose we have

1

1 2 3

2

1 2

3

2 3 4
x

x x x
T x

x x
x

 
   

        

How do we show T is a linear map (transformation)? 
By Definition (5-2) we need to show both the following conditions: 

     T T T  u v u v and    T k kTu u where k is a scalar 

Let 

1 1

2 2

3 3

and   

x y
x y
x y

   
   

 
   
      

u v . Then by applying the given transformation we have 

   
1 1

1 2 3 1 2 3

2 2

1 2 1 2

3 3

2 3 4 2 3 4
and  

x y
x x x y y y

T T x T T y
x x y y

x y

      
            

                              

u v

We have 

 

     

   

1 1

2 2

3 3

1 1 2 2 3 3

Applying the given linear map 1 1 2 2

1 2 3 1 2 3

1 2 1 2

1 2 3 1 2 3

1 21 2

2 3 4

2 3 4 2 3 4

2 3 4 2 3 4

x y
T T x y

x y

x y x y x y
x y x y

x x x y y y
x x y y

x x x y y y
y yx x

   
  

    
    

     
  

    

     
  

    

      
    

     



u v

   T Tu v

Let k be a scalar. For T to be linear we also need to show    T k kTu u :

 

 

1

2

3

1

2

3

1 2 3 1 2 3

Applying the given linear map 1 2 1 2

2 3 4 2 3 4

x
T k T k x

x

k x
T k x

k x

k x k x k x x x x
k kT

k x k x x x

  
  

   
    

  
  

   
    

      
     

      

u

u

Hence T is a linear map.  

The standard matrix S is given by the coefficients of 1 2,x x and x3:
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1 2 3

1

1 2 3

2

1 2

3

2 3 42 3 4
Because  

1 1 0

x x x

x
x x x

T x
x x

x

  
       

                

S

3. An example of a non-linear transformation 2 2:f  is

2x x
f

y xy
    

    
    

This does not satisfy    f k k fu u  where
x
y
 

  
 

u because

 

 
2 2 2

2 2 2

2

x
f k f k

y

k x xk x x
f k k f k f

k y yk xy xy

  
   

  

         
             

         

u

u

We have      2f k k f k f u u u which means that f  is not a linear transformation.

4. (a) The standard matrix for    1 2 3 2 3 1 2, , 3 2 , 3 4T x x x x x x x   is  

determined by evaluating    1 2,T Te e and  3T e where  1 1, 0, 0
T

e , 

 2 0, 1, 0
T

e  and  3 0, 0, 1
T

e  [or reading off the coefficients of 1 2,x x and 

3x ]: 

     1 2 3

1 0 0
0 3 2

0 , 1  and 0
3 4 0

0 0 1

T T T T T T
     

          
                         

     

e e e

Thus the standard matrix S is given by 

      1 2 3

0 3 2

3 4 0
T T T  

   
 

S e e e

(b)     ker T  O  ker TBy Proposition (5-7) T is one-to-one  . How can we find ?

By finding 1 2,x x and 3x such that    1 2 3 2 3 1 2, , 3 2 , 3 4T x x x x x x x   O : 

 

 
2 3

1 2

*3 2 0

**3 4 0

x x
x x

 

 

From (*) we have 2 3 2 3

2
3 2

3
x x x x     . Let 3 3x t where t is any real number. 

Then 2 2x t  . Substituting 2 2x t  into the bottom equation (**) we have 

 1 1

8
3 4 2 0

3
x t x t     
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We have non-zero solutions because 1

8

3
x t  , 2 2x t  and 3 3x t where t . This 

means that  

8 / 3

ker 2

3

t
T t t

t

  
  

     
  
  

O .  

Hence T is not one-to-one.

(c)   dim ker 1T From part (b) we have  because there is only one free variable (t). 
Using the dimension theorem (5-5) which says:

     dim ker dimT range T n  (†) 

where n is the dimension of the domain. In this case the domain is 3  because we are 

given     1 2 3 2 3 1 2, , 3 2 , 3 4T x x x x x x x    which means 3 2:T  .

What is the dimension of 3 ? 
It is 3. Substituting 3n   and   dim ker 1T   into (†) gives

     1 dim 3 dim 2range T range T   

This means that   2range T   and since we have 3 2:T  therefore T is onto.

5. (a) How do we check that the given set S is a subspace of 2 ? 
By using

Proposition (3-5). A nonempty subset S is a subspace of a vector space V 
(a) SO [Zero vector is in S]. 

(b) If u and v are vectors in S then any linear combination k cu v  is also in S.

Clearly the zero vector 0 is in S because 0 0u  . 

Let v  and w  be vectors in S and k and c be scalars. Need to show that kv cw  is also 

in S for S to be a subspace of 2 : 

     
   0 0 0 0  because ,

kv cw u k v u c w u

k c v u w u v w S

     

        
 

Since both conditions of Proposition (3-5) are satisfied therefore S is a subspace of 2 . 

(b) (i) We are given

1 2

1 1
T
    

    
    

  and   
0 1

1 3
T
    

    
    

We have to write 1

1

0
e  
  
 

 and 2

0

1
e  
  
 

 in terms of 
1

1

 
 
 

 and 
0

1

 
 
 

: 

1

1 1 0
gives  1, 1

0 1 1
e a b a b     
          

      

2

0 1 0
gives  0, 1

1 1 1
e c d c d     
          

      

We can find  1T e and  2T e by using the above: 
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   1

1 1 0
Substituting  1  and  1

0 1 1

1 0 2 1 1

1 1 1 3 2

T e T T a b

T T

        
            

         

         
             

           

 

   2

0 1 0
0 Substituting 0  and  1

1 1 1

1 0 2 1 1
0 0

1 1 1 3 3

T e T T c d

T T

        
            

         

         
             

           

   

(ii) The matrix representation A with respect to the standard basis is 

   1 2

1 1

2 3
T e T e

         
A  where 

x x
T

y y
   

   
   

A  

(iii) Let 
1

2

w
w
 

  
 

w  then  

1 1

2 2

1

1

2

1 1 1

2 3 8

1 1 1 Taking the

2 3 8 inverse matrix

3 1 11

2 1 83 2

5 11

10 25

w w
T

w w

w
w



        
        

        

       
       

       

   
    
     

   
     

   

 

That is 
1

2

1

2

w
w

   
    

  
w .  

 

6. (a) The given transformation S is 
1 2 3

1

1 2 3

2

1 2 3

3

1 2 3

4 2

2 7

8 2

2

x x x
x

x x x
S x

x x x
x

x x x

  
   

          
  

  

 

Remember the standard matrix is given by the coefficients of 1 2,x x  and 3x . This 

means that the standard matrix, call it A, of operator S is  

1 4 2

2 7 1

1 8 2

2 1 1

 
 

 
  
 
 

A  

(b) To find a basis for the range of T we take the transpose of matrix A and then place 

this into row echelon form: 
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1 4 2
1 2 1 2

2 7 1
4 7 8 1

1 8 2
2 1 2 1

2 1 1

T

T

 
  

              
 

A

Labelling the rows of A
T
:

1

2

3

1 2 1 2

4 7 8 1

2 1 2 1

R
R
R

 
 
  
  

Carrying out the row operations 2 14R R and 3 12R R : 

1

2 2 1

3 3 1

1 2 1 2

' 4 0 15 12 9

' 2 0 5 4 3

R
R R R
R R R

 
 

   
     

Executing 2 '/ 3R : 

1

2 2

3

1 2 1 2

* '/ 3 0 5 4 3

' 0 5 4 3

R
R R

R

 
 

  
   

Executing 3 2' *R R : 

1

2

3 3 2

1 2 1 2

* 0 5 4 3

* ' * 0 0 0 0

R
R

R R R

 
 

 
    

A basis for the range are the non-zero rows of the last matrix, that is 

1 0

2 5
,

1 4

2 3

    
    
     
     
        

. 

7. (a) :T V W  is a linear transformation if both the following conditions are

satisfied:

     T T T  u v u v and    T k kTu u

for all vectors u and v in V and any scalar k. 

(b) The kernel of T, ker T, is the set of vectors v in V of :T V W  such that

 T v O .

(c) We need to prove that:

T is injective, this means one to one,  ker T  O

Proof. 
( ). We assume T is one to one. By Proposition (5-1) we have  T O O . Since T is 

one to one therefore there can be no other vector in V which is transformed to the zero 

vector under T. Hence  ker T  O . 

  . We assume  ker T  O . What do we need to prove?
T is one to one (injective). How? 
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By Definition (5-7) which says:

Transformation T is one to one    u v  implies    T Tu v .

Let u and v be in V such that u v . We have 

     
because  is linearT

T T T   u v u v O

Because if    T T u v O  then we have

     T T T   u v u v O      u v O u v

This is contradiction because we had u v  therefore 

   T T u v O

   T Tu vHence . By Definition (5-7) we conclude that T is one to one (injective).

■ 

(d) We need to find ker T which means we need to find ,x y  and z such that

0

0

x
x y

T y
x y z

z

 
    

           
 

We have to solve the simultaneous equations 

 

 

*0

**0

x y
x y z

 

  

From the top equation (*) we have x y  . Let y t  where t is any real number then 

x t  . Substituting these, x t  and y t , into the bottom equation (**) gives 

0z  . Thus ker T  is given by 

1

ker 1

0 0

x t
T y t t

z

      
     

       
     
     

 where t

We conclude that     ker 1, 1, 0
TT span  . 

8. a. To find a basis for the image (range) of T we need to transpose the given matrix

and we can call this new matrix A:

1 1 0
1 1 1 0

1 1 0
1 1 1 1

1 1 2
0 0 2 1

0 1 1

T  
   
         

  
 

A

How do we find a basis for the image of T? 
It is the non-zero rows of the (reduced) row echelon form of matrix A: 

1

2

3

4

1 1 0

1 1 0

1 1 2

0 1 1

R
R
R
R

 
 
 
 
 
 

Carrying out the row operations 2 1R R and 3 1R R : 
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1

2 2 1

3 3 1

4

1 1 0

* 0 0 0

* 0 2 2

0 1 1

R
R R R
R R R

R

 
 

 
 
   
 
 

 

Carrying out the row operation 3 4* 2R R : 

1

2

3 3 4

4

1 1 0

* 0 0 0

' * 2 0 0 4

0 1 1

R
R

R R R
R

 
 
 
  
 
 

 

Dividing the third row by 4 and interchanging rows 2 *R  and 4R : 

1

2 4

3 3

4 2

1 1 0

' 0 1 1

'' '/ 4 0 0 1

* 0 0 0

R
R R

R R
R R

 
 


 
 
 

  

 

Executing 2 3' ''R R : 

1

2 2 3

3

4

1 1 0

'' ' * 0 1 0

* 0 0 1

0 0 0

R
R R R

R
R

 
 

 
 
 
 
 

 

Finally executing 1 2 ''R R  gives us a matrix in reduced row echelon form: 

1 1 2

2

3

4

' '' 1 0 0

'' 0 1 0

* 0 0 1

0 0 0

R R R
R
R
R

   
 
 
 
 
 

 

A basis B for the image of T are the non-zero rows of this last matrix, that is  

1 0 0

0 , 1 , 0

0 0 1

B
      
      

       
      
      

 

The columns of the matrix associated with T does span 3  because a basis for this is 

the set B above which is the standard basis for 3 . 

b. The transformation T is onto because the basis for the image of T is the set B given in 

part a which is the standard basis for 3  which means that the range of T is 3  and we 

are given 4 3:T  . 

c. A basis for the null space of T can be found by placing the given matrix into reduced 

row echelon form and solving the resulting equations Rx O : 

1

2

3

1 1 1 0

1 1 1 1

0 0 2 1

R
R
R

 
 

 
 
 

 

Carrying out the row operation 2 1R R : 
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1

2 2 1

3

1 1 1 0

* 0 0 2 1

0 0 2 1

R
R R R

R

 
 

   
 
 

Executing 3 2 *R R : 

1

2

3 3 2

1 1 1 0

* 0 0 2 1

* * 0 0 0 2

R
R

R R R

 
 

 
    

Dividing the bottom row by 2 gives 

1

2

3 3

1 1 1 0

* 0 0 2 1

' * / 2 0 0 0 1

R
R

R R

 
 

 
   

Executing 2 3* 'R R : 

1

2 2 3

3

1 1 1 0

' * ' 0 0 2 0

' 0 0 0 1

R
R R R

R

 
 

   
 
 

Dividing the middle row by 2  gives 

 
1

2 2

3

1 1 1 0

'' '/ 2 0 0 1 0

' 0 0 0 1

R
R R

R

 
 

   
 
 

Carrying out the row operation 1 2 ''R R gives us the reduced row echelon form matrix

R: 

1 1 2

2

3

' '' 1 1 0 0

'' 0 0 1 0

' 0 0 0 1

R R R
R
R

   
 

 
 
 

R

Null space is found by solving Rx O  which is 

1

2

1 2 3 4

3

4

1 1 0 0 0

0 0 1 0 0 gives  , 0

0 0 0 1 0

x
x

x x x x
x
x

 
    
             
   

    
 

A basis B’ for the null space is 

1

1
'

0

0

B

  
  
    

  
    

. 

d. By part c we have one vector in the basis of the null space so the dimension of the

null space is 1 which means that   1nullity T  .

  1nullity T Since  therefore the given transformation T is not one to one because 
Proposition (5-8) in the main text says: 

T is one to one     0nullity T  .
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9. We are given that  
1

3
1

5
2

T
 

   
        

 and 

3
1

0
2

2

T
 

   
   

    

 

However we need to find 
7

11
T  
 
 

. How? 

We need to write 
7

11

 
 
 

 in terms of 
3

5

 
 
 

 and 
1

2

 
 
 

. Let a and b be the scalars such 

that 

3 1 7

5 2 11
a b

     
      

      
        

Writing these out as equations and solving  

3 7
 gives 3  and  2

5 2 11

a b
a b

a b
  

 
    

 

Thus we have 
3 1 7

3 2
5 2 11

     
      

      
. To determine 

7

11
T  
 
 

 we have 

 

7 3 1 7 3 1
3 2 Substituting  3 2

11 5 2 11 5 2

3 1
3 2 Because  is linear

5 2

1 3 1
3

3 1 2 0 Using 1 ,
5

2 2 2

T T

T T T

T T

                
                 

                 

   
    

   

     
      

                     

3
1

0
2

2

3 6 9

3 0 3

6 4 2

  
   

   
     

   
   

    
   
      

 

Thus 

9
7

3
11

2

T
 

   
        

. 

 
10. One definition of mathematics is the science of patterns. What pattern do you  

notice about the given vector 
1

1

1

 
 
 
  

? 

1 1

1 1 1

1 1

   
   

  
   
      

 

Since L is a linear transformation therefore  
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Given in the
question

1 1 1 1 1

1 1 1 1 2 2

1 1 1 4 4

L L L
                 
              

                       
                             

11. (a) We are given that matrix A is of size 6 5 . What does this mean?
Means the matrix A has 6 rows and 5 columns. We are also given  T x Ax  which

means we have

11 15 1 11 1 15 5

61 65 5 61 1 65 5

5 columns

6 rows

a a x a x a x

a a x a x a x

    
    

    
    
    

The given transformation 5 6:T  . We have 6m   and 5n  .

(b) Since the range of T is a subset of 6  therefore the maximum number of linearly 

independent vectors in the range is 6.

(c) We are given that nullity of A is 0. By the dimension theorem (6.12) we have

   nullity T rank T n 

Substituting   0nullity T   and 5n   gives   5rank T  . Since   5rank T   therefore 

range of T cannot equal 6 because  6dim 6 so T is not onto. 

(d)   0nullity T Since  therefore T is one-to-one because Proposition (5-8) says:

:T V W is one to one     0nullity T   

12. Let A be the matrix representing the transformation 2 3:T  . We have

   1 2T T   A e e . We are given

 1

2

1T
h

 
 


 
  

e  and  2

3

0

T k
 
 


 
  

e

Thus the matrix A is given by 

2 3

1

0

k
h

 
 

  
 
 

A . For what values of h and k is the 

transformation one-to-one? 
  ker T OBy Proposition (5-7)   we have T is one to one   where O is the zero 

vector. How do we find the kernel of T ? 

Let 
x
y
 

  
 

x then    ker T  x Ax O . For one to one we need 
x
y
 

  
 

x O which 

means the only solution to  Ax O  is 0x   and 0y  .

By expanding Ax O  we have 

2 3 2 3 0

1 0

0 0

x y
x

k x k y
y

h hx

     
      

         
           

Ax
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From the bottom row we have 

0 0hx h      

Why do we need 0h  ? 
Because if 0h   then 0x   will satisfy the bottom row. Remember the only solution to 

the above equations is 0x y  . 

The first two rows are the simultaneous equations 

 

 

12 3 0

20

x y
x ky
 

 
 

Multiplying equation (2) by 2 and subtracting from (1) we have 

 

2 3 0

2 2 0

3 2 0

x y
x k y

k y

 


 

 

 

We have 
3

3 2 0
2

k k    .  

This means that the given transformation is one to one for all real values of h and k 

provided 0h  and 
3

2
k  . 

 

13. (a) The zero vector in  0, 1C  is the constant function 0. 

(b) Let  1, 0, 1f g C . What do we need to show? 
Required to show both the following conditions: 

     T f g T f T g    and    T k f kT f  where k is a scalar 

Checking      T f g T f T g   : 

 
 

    

        

           

    

 

    

 

   

2

2 2

2 2

2 2

T f T g

d f g
T f g x f g x

dx
d f g x f x g x
dx
d df x g x f x g x
dx dx
df dgx f x x g x
dx dx

T f T g



   

     

         

   

 

 

Checking     T k f kT f : 

 
 

    

     

     

 

 

2

2

2

T f

d k f
T k f x k f x

dx
dk f x k f x
dx

dk f x f x kT f
dx



 

   

 
     

 

 

Hence T is a linear transformation. 



Complete Solutions Miscellaneous Exercises 5    13 

(c) The kernel of T is the set of functions  1 0, 1f C  which satisfies

   2 0
df x f x
dx

 

Rearranging this we have 

   

 

 

2

2

d f x f x
dx
d f x

dx
f x

  

   

Integrating both sides gives 

 

 

  

2

ln 2

d f x
dx

f x

f x x C

   

 

 

Taking exponentials of both sides gives  

  2 2 2x C x C xf x e e e Ae   where CA e is a constant

We have   2ker xT Ae  which means    ker xT span e .Therefore there is only one 

vector in basis of  ker T  which implies   dim ker 1T  .

14. We are given that :T V W  is a linear transformation.

(a)  TWe need to show that ker is a subspace of V. 
How do we show this result?
By using Proposition (3-5) which says:

A non-empty subset S in a vector space V is a subspace of V 

(a) SO

(b) , Su v then for any scalars ,k c we have k c S u v

We need to show both the conditions, (a) and (b), of Proposition (3-5). 

Proof. 
Checking condition (a): 

Since  T O O  therefore  ker TO  so condition (a) is satisfied. This also means

that  ker T  is a non-empty subset of V.

Checking condition (b): 

Let u  and v be vectors in  ker T  and ,k c  be any scalars. Consider the transformation

of the linear combination k cu v : 

       

     

Because   is linear

Because ,  ker  so =

T k c kT cT T

k c T T T

  

     



u v u v

O O u v u v O

O

This means that  kerk c T u v .  

Thus both conditions of (3-5) are satisfied so we conclude ker  T is a subspace of V.

■ 

(b) We need to show that  im T  is a subspace of W. How?
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Again we use Proposition (3-5) as described in part (a) above. Remember image of T
is the same as the range of T.

Proof.
Checking condition (a): 

Since  T O O  therefore  im TO  so condition (a) is satisfied. This also means that

 im T is a non-empty subset of W.

Checking condition (b):

Let u  and v be vectors in  im T and ,k c be any scalars. We need to show k cu v is

also in  im T .

Since  , im Tu v therefore there must be vectors ', ' Vu v such that  'T u u and

 'T v v . We have

   

   

' '

' ' Because  is linear

k c kT cT

T k c T

  

 

u v u v

u v

We know ', ' Vu v and V is a vector space so therefore ' 'k cu v V . This means 

that  k c im T u v .

 im T

■ 

Both the conditions of (3-5) are satisfied so we conclude that is a subspace of W.

(c) How do we find the dimensions of the kernel and image (range) of T?
We can use the dimension theorem (5-5) which says:

     dim dim kerrange T T n  (*) 

where n is the dimension of V if we have :T V W . 

In our case we have 3 3:T  so 3n  . We need to find the dimensions of either

image of T or the kernel of T. Let us find the dimensions of kernel which is the solution

set of  , ,T x y z O :

 

 

 

2 0 1

0 2

2 0 3

x y z
y z

x y z

  

 

  

From the middle equation (2) we have y z  . Let z t  where t is any real number.

Then y t  . Substituting these y t   and z t  into the top equation (1) gives

2 0 gives   3x t t x t   

Our solution set is the kernel of T which is given by 

 

3 3

ker 1 where 

1

x t
T y t t t

z t

     
     

          
     
     

Since     ker 3, 1, 1
TT span    therefore   dim ker 1T  .

Substituting   dim ker 1T   and 3n   into the above equation (*) gives

     dim 1 3 dim 2range T range T   
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Hence we have   dim ker 1T   and   dim 2range T  . Remember range and image 

are identical terms so   dim 2image T  . 

 

15. We are given that       1 2, , , nT T Tv v v  is linearly independent and we  

need to prove that  1 2, , , nS  v v v  is linearly independent. How? 
Required to prove that 1 1 2 2 1 2 0n n nk k k k k k        v v v O . 

Proof. 
Consider the linear combination  

1 1 2 2 n nk k k   v v v O  

where 1 2, , , nk k k  are scalars. Taking the transformation of this gives 

   1 1 2 2 n nT k k k T   v v v O  

Since T is linear we have  

       1 1 2 2 n nk T k T k T T    v v v O O  

We are given that       1 2, , , nT T Tv v v  is linearly independent therefore  

1 2 0nk k k     

We have 1 1 2 2 1 2 0n n nk k k k k k        v v v O  which means that 

 1 2, , , nS  v v v  is linearly independent. 

■ 

We need to show that  1 2, , , nS  v v v  is linearly independent    

      1 2, , , nT T Tv v v  is linearly independent.  

For example consider the linear transformation 2 2:T   given by  

x x y
T

y x y
     

    
    

 

Let 1

1

1

 
  
 

v  and 2

2

1

 
  
 

v , then these are linearly independent but  

 1

1 1 1 0

1 1 1 0
T T

       
         

      
v O  

Since  1T v O  therefore    1 2  and  T Tv v  are linearly dependent because one of 

the vectors is the zero vector. 

 

16. (a) A mapping 2 3:T P P  is a linear mapping if both the following conditions are  

satisfied: 

     T T T  p q p q  and    T k kTp p  

where p  and q are any vectors in 2P  and k is a scalar. 

Checking    T k kTp p : 

Let k  be a scalar and 2

0 1 2a a t a t  p  then applying  

   2 2 3

0 1 2 1 2 0 1 2: 3 2T a a t a t a a t a t a a t        

gives 
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   

 

 

 

 

2

0 1 2

2 3

1 2 0 1 2

2 3

1 2 0 1 2

3 2

3 2

T

T k T a k a kt a kt

a k a kt a kt a k a k t

k a a t a t a a t

kT


  

    

      



p

p

p

     

(b) The matrix A  is given by       21
C C C

T T t T t          
A . We need to find 

   1 ,T T t  and  2T t  where    2 2 3

0 1 2 1 2 0 1 2: 3 2T a a t a t a a t a t a a t       : 

         

         

         

0 1 3

0 1 3

0 1 3

2 2 3 2

1, 0  and  0

2 2 3 3

0, 1  and  0

2 2 2 3 3

0, 0  and  1

1 1 0 0 3 0 2 0 1 0 0

0 1 0 3 1 2 0 0 1 0 3

0 0 1 3 0 2 1 0 0 1 2

a a a

a a a

a a a

T T t t t t t t

T t T t t t t t t

T t T t t t t t t t

  

  

  

        

         

         

 

We need to write each of these vectors    1 ,T T t  and  2T t  as coordinates of the 

basis  2 31, , ,C t t t : 

         

         

         

2 2 3

3 2 3

2 3 2 3

1 0 1 0 1 0

3 3 1 0 0 1

2 0 1 2 0 1

T t t t t

T t t t t t

T t t t t t t

    

     

     

 

What is       21
C C C

T T t T t          
A  equal to? 

0 3 0

0 0 2

1 0 0

0 1 1

 
 
 
 
 
 

A  

(c) By using the above matrix A we need to determine  22 5T t t  . What are the  

coordinates of 22 5t t   with respect to the basis  21, ,B t t ? 

2

2

2 5 5

1
B

t t
 
 

      
  

 

We have 2

0 3 0 15
2

0 0 2 2
2 5 5

1 0 0 2
1

0 1 1 4

B
t t

   
    

              
     

   

A . This means that  

 2 2 32 5 15 2 2 4T t t t t t       

Check: Applying    2 2 3

0 1 2 1 2 0 1 2: 3 2T a a t a t a a t a t a a t       : 



Complete Solutions Miscellaneous Exercises 5    17 
 

       
0 1 3

2 2 3 2 3

2, 5  and  1

2 5 3 5 2 1 2 5 1 15 2 2 4
a a a

T t t t t t t t t
  

             

(d) Yes we can do the same with    3:T p t p t   but we will need to replace the  

matrix A above with a new matrix.  

 

17. (a) Let u and v be vectors in n  and m be any scalar. Then : n kT   is a linear  

transformation if 

     T T T  u v u v  and     T m mTu u  (m is a scalar) 

(b) (i) Let 

a
b
c

 
 


 
  

u  and 

d
e
f

 
 


 
  

v  then applying the given transformation 

    , , 2 , 2 3 , ,T x y z x y y z z x x     we have  

 

2

2 3

a b
a

b c
T T b

c a
c

a

 
    

               
 

u  and  

2

2 3

d e
d

e f
T T e

f d
f

d

 
    

               
 

v  

Evaluating the other way we have 

 

   

   

   

   

22

2 32 3
Because  

2 2

2

a d
T T b e

c f

x ya d b e
a d x

y zb e c f
T b e T y

z xc f a d
c f z

xa d

a b d e
b

    
    

      
        

        
          

                                          
      

  




u v

   

   

   

   

3 2 3

2 2

2 3 2 3

T T

c e f
c a f d

a d
a b d e
b c e f

T T
c a f d

a d
 

 
 

  
   
 

 

    
   

 
      
    
   
   

u v

u v

 

Hence we have      T T T  u v u v . Let us check the second condition, 

   T m mTu u : 
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 

 

2 2

2 3 2 3

a
T m T m b

c

ma mb a b
ma

mb mc b c
T mb m mT

mc ma c a
mc

ma a

  
  

   
    

    
      

                         
   

u

u

 

Thus the given transformation T is linear. 

(ii) The standard matrix S of the given linear transformation  

    , , 2 , 2 3 , ,T x y z x y y z z x x     

is determined by reading off the coefficients of  x, y  and z: 

1 2 0 2

0 2 3 2 3
Because  

1 0 1

1 0 0

x y z
x y

x
y z

T y
z x

z
x

     
    

            
     
     

S
 

(c) We need to prove that  T v  ( nv ) is uniquely determined by the vectors 

     1 2, , , nT T Tb b b  where  1 2, , , n  b b b  is a basis of n .  

Proof. 
Let nv  be an arbitrary vector. Since  1 2, , , n  b b b  is a basis of n  

therefore we can write the vector v uniquely as 

1 1 2 2 n nk k k   v b b b  

where the k’s are scalars. Taking the transformation of this we have 

   

       
1 1 2 2

1 1 2 2 Because  is linear

n n

n n

T T k k k

k T k T k T T

   

   

v b b b

b b b
 

Thus  T v can be expressed uniquely by the vectors      1 2, , , nT T Tb b b . 

■ 

 

18. (a) Need to show that   1 , 1 , , 1x xx x e x e      is linearly independent.  

Let 1 2 3, ,k k k  and 4k  be scalars such that  

     1 2 3 41 1 1 0x xk x k x k e k x e        

Expanding this out gives  

     1 2 1 2 3 4 4 0x xk k k k x k k e k xe        

Equating coefficients of xxe  gives 4 0k  .  

Equating coefficients of xe  gives  3 4 3 40 0 Because 0k k k k     .  

Equating coefficients of x  gives 1 2 1 20k k k k    .  

Equating constants gives 1 2 1 20k k k k     .  

From the last two lines we have 1 2 0k k  . Hence all our scalars 1 2 3 4 0k k k k    . 

What does this mean? 
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Means that the vectors in   1 , 1 , , 1x xx x e x e      are linearly independent. 

Since these vectors span the given subspace V therefore they are a basis for V. 

(b) Using the expanded version from part (a) which is: 

     1 2 1 2 3 4 4 1x x xk k k k x k k e k xe xe         (☼) 

Equating coefficients of xxe  in (☼) gives 4 1k   .  

Equating coefficients xe  gives 3 4 0k k  . Since 4 1k    therefore 3 1k  .  

Equating coefficients of x and constants of (☼) gives the simultaneous equations 

1 2

1 2

1 2

0 1

1 2

k k
k k

k k
  

  
  

 

The coordinates of the given vector 1 xxe u  with respect to the basis   is  

 

1

2

3

4

1/ 2

1/ 2

1

1

k
k
k
k



   
   
    
   
   

  

u  

(c) We need to differentiate each of the terms in   1 , 1 , , 1x xx x e x e     : 

       1 1, 1 1, , 1 2x x x x xd d d dx x e e x e e xe
dx dx dx dx

          

Writing each of these  1, 1, , 2x x xe e xe   in terms of the basis vectors   we have: 

     1 2 1 2 3 4 4 1x xk k k k x k k e k xe        implies 1 2 3 4

1
, 0

2
k k k k     

     1 2 1 2 3 4 4 1x xk k k k x k k e k xe         implies 1 2 3 4

1
, 0

2
k k k k      

     1 2 1 2 3 4 4

x x xk k k k x k k e k xe e        implies 1 2 4 30, 1k k k k     

     1 2 1 2 3 4 4 2x x x xk k k k x k k e k xe e xe         implies 1 2 3 40, 1k k k k     

We have  

 

1/ 2

1/ 2
1

0

0



 
 
 
 
 
 

,  

1/ 2

1/ 2
1

0

0



 
 


  
 
 
 

,  

0

0

1

0

xe


 
 
      
 
 

,   

0

0
2

1

1

x xe xe


 
 
      
 
 

 

The matrix representation of this differentiation operator is given by  

     1 1 2x x xD e e xe
   



           
 

The matrix is  

1/ 2 1/ 2 0 0

1/ 2 1/ 2 0 0

0 0 1 1

0 0 0 1

D 



 
 


 
 
 
 

.  

(d) We first differentiate the given 1 xxe u : 

1 x x x x xd xe e xe e xe
dx

              
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 D 
u is the coordinates of Du with respect to the basis  . This means we need to 

find the scalars 1 2 3, ,k k k  and 4k such that

     1 2 1 2 3 4 4

x x x xk k k k x k k e k xe e xe        

which gives 1 2 4 30, 1   and  0k k k k     . Thus  

0

0

0

1

D 

 
 
 
 
 
 

u .

Working out    

From part (b)

1/ 2 1/ 2 0 0 1/ 2 0

1/ 2 1/ 2 0 0 1/ 2 0

0 0 1 1 1 0

0 0 0 1 1 1

D  



     
     


      
     
     

      

u . 

Hence we have      D D  


u u . 

19. (a) i. Let
a
b
 

  
 

u and
c
d
 

  
 

v  be our vectors in 2 . How do we show 

     f f f  u v u v    f k k fu u

whether the given map f  is linear or not? 
Need to show that both and , where k is a 
scalar, are satisfied. This is definition (5-2).  

We are given    2 5

5: : , .f P a b a b x    

Checking      f f f  u v u v : 

 

   

   

   

5

Applying the 
given map

5 5

a c
f f

b d

a c
f a c b d x

b d

a b x c d x

f f

    
      

    

   
           

   

 

u v

u v

Checking    f k k fu u :

 

 

   

5

Applying the 
given map

5

a
f k f k

b

ka
f ka kb x

kb

k a b x k f

  
   

  

  
    

  

  

u

u

Thus since f  satisfies both      f f f  u v u v  and    f k k fu u  therefore f  is
a linear map. 



Complete Solutions Miscellaneous Exercises 5    21 

ii. We need to check whether    2: 2, 2 : ,
a b

f M ad bc
c d
 

  
 

is linear or 

not. Let 
a b
c d
 

  
 

A then  
ad

f
bc
 

  
 

A . 

Checking    f k k fA A . It is easier to check this condition first.

 

     2 2

Applying the 
given map

Not Equal

a b
f k f k

c d

ka kb
f

kc kd

kakd ad
k k f k f

kbkc bc

  
   

  

  
   

  

   
      

   

A

A A

Hence the given map is not linear because       Not Equalf k k fA A .

(b) The image (range) of a map :f V W  is the set   f Vv v , this can be

drawn as:

 

The kernel are the elements in the vector space V  such that  f v O , that is all the

elements in V of :f V W  which get mapped to the zero vector.

The dimension of the image (range) of f  is called the rank of f.
The dimension of the kernel of f  is called the nullity of f.
Let n be the dimension of the given vector space V. The Rank-Nullity theorem states:

   rank f nullity f n 

(c) Since   1nullity f   therefore f  is not injective (not one-to-one) because by:

:T V WProposition (5-8). Let be a linear transformation. T is one to

one (injective)   0nullity T  .

For f  to be injective (one-to-one) we need   0nullity f   but we have   1nullity f   

which means f  is not one-to-one.

By substituting   1nullity f   into    rank f nullity f n   we have

  1rank f n 

Since 3

2:f P  therefore 3n   (dimension of 2P )  and   3 1 2rank f    .  

Dimension of 3 is also 3. In our case we have   2rank f   but  3dim 3

This means that f  is not surjective (not onto) because by:

:T V WProposition (5-10). Let  be a linear transformation. Then T is
onto (surjective)    dimrank T W  .

V W

f

f

Image of f.
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(d) To prove that the given map is injective we need to show that    ker f  O . What 

is  ker f  equal to? 

It is those elements  , , ,x y z t  in 4  such that  

     , , , , 0, 0, 0, 0f x y z t x y z t     

Writing this in conventional manner we have 

0

0 0

0

x
x y

y
f

z
z t

t

 
    

          
        

 

 

From the first and last rows we have 

0 gives   

0 gives   

x y x y
z t z t
   

   
 

Let y a  and t b  where a and b are any real numbers then x y a     and 

z t b    . Hence elements in 4  which are mapped to the zero vectors are  

 , , ,a a b b   where a and b  are any real numbers. Thus  

 

1 0

1 0
ker

0 1

0 1

a
a

f a b
b
b

      
     
        
      
     
     

O  

 (does not equal zero) therefore f  is not injective. 

A basis for  ker f  is 

1 0

1 0
,

0 1

0 1

     
    
     
    
        

. Since we have two linearly independent vectors 

therefore the dimension of the kernel is 2 which means   2nullity f  .  

What is the dimension of 4 ? 
4. Using the dimension theorem with 4n   and   2nullity f   we have 

   

   2 4 2

Rank f Nullity f n

Rank f Rank f

 

   
 

Since we are given that 4 3:f   and  3dim 3  but we have   2Rank f   

therefore f  is not onto (not surjective). 

This means that the dimension of image (range) is 2. A basis for the image can be 

evaluated by: 

0 0
1 0

1 0
0 , 0

0 0
0 1

0 1

f f

   
      
             
   

      
   
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A basis for the image is  

1 0

0 , 0

0 1

    
    
    
    
    

. 

 
20. Do you remember what 1 2T T  means? 
Let u be a vector in the domain, 2 , of T2 then      1 2 1 2T T T Tu u .  

Let 2
x
y

 
  
 

u  then  

  1 2 1 2

1 2

1

Because  
2 2

2 2 2
Because  

2

3 2

2

x
T T T T

y

x x x
T T

x y y x y

x x y x x y
T

x x y y x y

x y
y

   
     

   

         
          

           

          
        

            

 
  
 

u

 

What is the standard matrix S for this transformation? 
3 2

0 2

 
  
 

S  

Selection C is correct.  

 

21. The standard matrix B for the given linear transformation  

    1 2 3 1 2 3 2 3 1 2 3, , 3 5 , 4 3 , 4S x x x x x x x x x x x       

is given by reading off the coefficients of 1 2,x x  and 3x : 

1 2 3

1 1 2 3

2 2 3

3 1 2 3

3 5 1 3 5

0 4 3 Because 4 3

1 1 4 4

x x x

x x x x
S x x x

x x x x

          
       

         
                

B
 

Therefore the matrix C is given by 

  

  

 

 
1 1

2 2

3 3

3 5 1 1 0 5 9 6 15

0 4 3 2 1 0 20 1 0  

1 1 4 4 1 0 15 5 5

S T

S T







          
        

            
                

Cx x

x

B Ax

x x

BA x x x

x x
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Hence matrix  C

9 6 15

20 1 0

15 5 5

 
 

   
 
 

BA . 

 

22. (a) Let x and y be vectors in 4 . To prove that   is a linear mapping  

(transformation) we need to show both the following conditions: 

         x y x y  and     k k x x    (k is scalar) 

We have 

   

   



 

  

 

 

x y A x y

Ax Ay

x y

        

Let k be scalar then      k k k k   x A x Ax x .  

Since we have          x y x y  and     k k x x  therefore   is a linear map 

(transformation). 

We are given that  1 1, 0, 0, 0
T

e  therefore 

 1 1

1 0 1 1 1 1

1 1 1 1 0 1

1 2 3 4 0 1

1 5 2 2 0 1

 

    
    
     
    
    
     

e Ae

 

(b) Since we need to find the determinant of a 4 4  matrix therefore it should easier to 

first carry out some simple row operations. Labelling the rows of matrix A we have 

1

2

3

4

1 0 1 1

1 1 1 1

1 2 3 4

1 5 2 2

R
R
R
R

 
 
 
 
 
 

 

Carrying out the row operations 2 1 3 1,R R R R   and 4 1R R  we have 

1

2 2 1

3 3 1

4 4 1

1 0 1 1

* 0 1 2 0

* 0 2 4 3

* 0 5 1 3

R
R R R
R R R
R R R

 
 

 
 
  
 

   

  (†) 

The determinant of this last matrix can be found by expanding along the first column: 
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     

Expanding along
the first row

1 0 1 1
1 2 0

0 1 2 0
det 1det 2 4 3

0 2 4 3
5 1 3

0 5 1 3

4 3 2 3
det 2det

1 3 5 3

12 3 2 6 15 9 2 9 27

 
  
      
 

   
 

   
    

   

       

 

All the row operations carried out in (†) does not change the determinant therefore 

 det 27A . 

(c) For a basis for ker    we need to place matrix A into a reduced row echelon matrix 

R  and then solve the homogeneous system Rx O . From (†) in part (b) we have 

1

2

3

4

1 0 1 1

* 0 1 2 0

* 0 2 4 3

* 0 5 1 3

R
R
R
R

 
 
 
 
 
 

 

Carrying out the row operation 3 2* 2 *R R  yields 

1

2

3 3 2

4

1 0 1 1

* 0 1 2 0

' * 2 * 0 0 0 3

* 0 5 1 3

R
R

R R R
R

 
 
 
  
 
 

 

Executing the row operations 4 3* 'R R  and 3 '/ 3R  gives 

1

2

3 3

4 4 3

1 0 1 1

* 0 1 2 0

'' '/ 3 0 0 0 1

' * ' 0 5 1 0

R
R

R R
R R R

 
 
 
 
 

   

 

Carrying out the row operation 4 2' 5 *R R  gives 

1

2

3

4 4 2

1 0 1 1

* 0 1 2 0

'' 0 0 0 1

'' ' 5 * 0 0 9 0

R
R
R

R R R

 
 
 
 
 

   

 

Dividing the bottom row by 9  yields 

1

2

3

†

4 4 2

1 0 1 1

* 0 1 2 0

'' 0 0 0 1

' 5 * 0 0 1 0

R
R
R

R R R

 
 
 
 
 

   

 

Carrying out the row operations 1 3 ''R R , 1 4 ''R R  and 2 4* 2 ''R R  gives 
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1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 
 
 
 
 
 

 

Interchanging the bottom two rows gives the reduced row echelon form matrix R: 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
  
 
 
 

R  

Solving Rx O : 

1

2

3

4

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

x
x
x
x

    
    
    
    
    

    

  gives 1 2 3 4 0x x x x     

This means that  ker  O  and so there is no basis for  ker  .  

Since  ker  O  therefore   0nullity    and we are given that 4 4:   

therefore   4im    and a basis for 4  is the standard basis: 

1 0 0 0

0 1 0 0
, , ,

0 0 1 0

0 0 0 1

        
        
         
        
                

 

The given linear map   is invertible because matrix A which represents   is invertible 

since  det 27 0 A  [Not equal to zero]. 

 

23. (a) (i) Let u and v be vectors in V then T is a linear transformation if  

     T T T  u v u v  and    T k kTu u  where k is a scalar. 

(ii) The matrix A representing T with respect to the basis  1, , nB u u  is  

11 1

1

n

m mn

a a

a a

 
 

  
 
 

A  

where    
11 1

1

1

, ,

n

n

m mn

a a
T u T u

a a

   
   

    
   
   

. 

(b) We are given that  sin , cosB x x  which are the basis vectors. We need to find 

 sinT x ,   cosT x  and write these in terms of 
sin

cos

a x
b x
 
 
 

. 

We have  
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            

 

sin sin ' sin '' Because ' ''

cos cos '

cos sin

T x x x T f x f x f x

x x
x x

     

 

 

Similarly we have 

            

 

cos cos ' cos '' Because ' ''

sin sin '

sin cos

T x x x T f x f x f x

x x
x x

     

   

  

Collecting the above we have 

     sin cos sin 1 sin 1 cosT x x x x x      
1

sin
1B

T x
 

     
 

     cos sin cos 1 sin 1 cosT x x x x x        
1

cos
1B

T x
 

       

What is the matrix representation of T ? 
Let  B

T  be the matrix representing the given linear transformation T with respect to

the basis  sin , cosB x x :

      sin cos

1 1

1 1

B B B
T T x T x       

  
  

 

(c)   B
TBy Proposition (5-21) we have T is invertible  the matrix  is invertible.

How do we determine whether  
1 1

1 1B
T

  
  

 
 is invertible? 

Check that the determinant is not equal to zero: 

1 1
det 1 1 2 0

1 1

  
    

 

Thus the given linear transformation is invertible and taking the inverse gives 

 
1 1 11

1 12B
T   

  
  

(d) To find  f x  such that    '' ' 2sin 3cosf x f x x x    we need to use  
1

B
T 

found in part (c) and the vector 
2

3

 
 
 

because we are given 2sin 3cosx x :

 
1 2 1 1 2 11 1

3 1 1 3 52 2B
T        

       
        

Hence  
1 5

sin cos
2 2

f x x x  .  
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24. How do we show that    , : ,
V

T Tu v u v  is an inner product? 
We need to use the following from Chapter 4: 

,u v

Definition (4-1). 

An inner product on a real vector space V is an operation which assigns to each 

pair of vectors, u and v, a unique real number  which satisfies the 

following axioms for all vectors u, v and w in V and all scalars k. 

(a) , ,u v v u    [Commutative Law] 

(b) , , ,  u v w u w v w [Distributive Law] 

(c) , ,k ku v u v

(d) , 0u u and we have , 0u u if and only if u O

Proof. 
Let , , Vu v w  and we are given that : nT V  . The standard inner product on n

is the dot or scalar product denoted by  . We have 

       , ,T T T T  u v u v u v

Checking (a): 
We have 

   

       
Because  is an Inner Product

, ,

,

T T

T T T T




    

u v u v

u v v u v u

Thus part (a) of Definition (4-1) is satisfied. 

Checking (b): 

We have  

   

   

     

         
Because  is linear

, ,

Because  is an I.P.

, ,

T

T T

T T

T T T

T T T T

  

    

    

          

 

u v w u v w

u v w

u v w

u w v w

u w v w

Hence part (b) is satisfied. 

Checking (c): 
Let k be a scalar. We have 

   

     

       

, ,

, Because  is linear

,

k T k T

kT T T

kT T k T T k





          

u v u v

u v

u v u v u v

Part (c) is satisfied. 

Checking (d): 

We have 

   

     

, ,

0 Because  is an inner product

T T

T T



   

u u u u

u u

Also 
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         0 , ,T T T T T     u u u u u u u O

 ker T OSince we are given that T is one-to-one therefore  because Proposition

(5-7) says: 

  ker T O  

 T u O u O

   , : ,
V

T Tu v u v is 

T is one-to-one  

This means that  implies . Part (d) is satisfied. 

Since all four parts of definition (4-1) is satisfied therefore 

an inner product. 

■ 

25. We need to prove that if 1v and 2v are linear independent vectors in V where 

:T V W is a linearly one-to-one transformation then  1T v and  2T v are linearly 

independent. 

Proof.
Consider the linear combination 

   1 1 2 2c T c T v v O

where 1c and 2c are scalars. Since T is linear we have

 1 1 2 2T c c v v O

 ker T OWe are also given that T is one-to-one which means that  because

Proposition (5-7) says that: 

:T V W is one-to-one   ker T O  

Therefore from  1 1 2 2T c c v v O we have 

1 1 2 2c c v v O

We are given that 1v and 2v are linearly independent which implies that 1 2 0c c  . 

Thus we have    1 1 2 2c T c T v v O   1 2 0c c     1T v and  2T v are linearly 

independent. This is our required result. 

■ 

26. The following is true and proof of this follows:

If V is a vector space and :T V V  is an injective linear transformation, then T is

surjective.

 ker T O

Proof.
Since T is injective which is another term for one-to-one therefore  because

Proposition (5-7) says:

T is one-to-one    ker T O  

This means that the dimension of  ker T  is zero. Using the Dimension Theorem (6.12)

which states 

     dim ker dimT range T n  (n is the dimension of V)

We have 

    0 dim dimrange T V 

Thus     dim dimrange T V . By 
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:T V WProposition (5-10). Let be a linear transformation. Then T is
onto      dimrank T W .

We conclude T  is onto or surjective because       dim dimrange T rank T V  .

■ 

27. (a) We need to show that    Im A Ker A  given 2 0A   and :A V V .

Proof.
Suppose    Im A Ker A  that is Im  A  is not subset of  ker A . This means that

there is a vector  Im Ay  such that  ker Ay . Since  Im Ay  therefore there is a

vector Vx  such that  A x y . Consider  2A x :

    

  

   

 

2

Because  

Because  ker

A A A

A A

A A

A





   

   

x x

x

y x y

O y

Remember the definition of  ker A  are those elements u in V such that  A u O .

Since  ker Ay  therefore  A y O .

We have  2A x O  which means that 2 0A  . This is a contradiction because we are 

given that 2 0A  therefore our supposition    Im A Ker A must be wrong so 

   Im A Ker A which is our required result. 

■ 

(b) We need to show that the rank of A is at most 5.

The     dim Imrank A A  and     dimnullity A ker A .

Proof.
From part (a) we have    Im A Ker A  which means that

     dim Im dimA Ker A or    rank A nullity A

By the rank-nullity theorem which is (6.12) we have 

     dim 10rank A nullity A V  

Suppose   5rank A   then  

   

 

10

4 because we are supposing 5

nullity A rank A

rank A

 

 

This means that    rank A nullity A . This is impossible because in the above we had

   rank A nullity A . Thus our supposition   5rank A   must be wrong so

  5rank A   which is our required result.

■
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28. Let A, B and C be in nnM . Then T  is linear if      T T T  A C A C  and  

   T k kTA A  where k is a scalar. Checking the first result: 

     

   

T

T T

    

   

    

A C A C B B A C

AB CB BA BC

A C AB BA CB BC

 

We have      T T T  A C A C .  

Checking    T k kTA A : 

     

   

   

T k k k

k k

k kT

 

 

  

A A B B A

AB BA

AB BA A

 

Since we have      T T T  A C A C  and    T k kTA A  therefore T is a linear 

transformation. 

 

29. Let 
a
b
 

  
 

u  and 
c
d
 

  
 

v . To show that T is not linear we prove 

       Not EqualT T T  u v u v  

We have  

 

 

   

Because  

Using the rules of indices

a c x

b d y

a c

b d

a c

b

a c
T T

b d

a c
T

b d

xe e
T

ye e

e e
e e

a c
T T T T

b d

e e
e e





    
      

    

   
   

  

      
       

       

 
  
 

      
        

      

 
  
 

u v

u v

a c a c

d b d b d

e e e e
e e e e

     
      

     

 

Thus        T T T T  u v u v  which means that T is not a linear transformation. 

 

 




