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Complete Solutions to Exercises 5.4 

1. To show that a given linear transformation is one-to-one we use either of following two

propositions:

(5.14)   T is one-to-one   u v  implies    T Tu v

(5.15)   T is one-to-one      T Tu v  implies u v

(You could also show    ker T  O  in each case but not in this question).

(a) Let u and v be distinct vectors in2 , that is u v . We have 

   andT T   u Iu u v Iv v

Since u v therefore    T Tu v because we have    and T T u u v v . Since we

u v    T Tu vhave  implies  therefore by Proposition (5-7) we conclude that T is

one-to-one. 

(b) We use (5.2) in this case. Let
a

b

 
  
 

u and
c

d

 
  
 

v  be members of 2 . 

Applying the given transformation we have 

   and  
a b c d

T T T T
b a d c

          
             

          
u v

If    T Tu v  then
b d

a c

   
   

   
 which gives and b d a c  . Thus 

a c

b d

   
     
   

u v

   T Tu v u vWe have  implies  therefore by (5.2) we conclude that T is one-to-one. 

(c) Let
a

b

 
  
 

u and
c

d

 
  
 

v . Applying the given transformation to vectors u and v we 

have 

 
a a b

T T
b a b

     
     

    
u and  

c c d
T T

d c d

     
     

    
v

If    T Tu v  then we have
a b c d

a b c d

    
   

    
 which gives 

a b c d

a b c d

  

  

Adding these simultaneous equations together gives 2 2a c a c   . Substituting 

a c  into the first equation yields c b c d b d     . Thus the solutions of the 

above simultaneous equations is a c  and b d  which gives 

a c

b d

   
     
   

u v

   T Tu v u vWe have implies . By (5.2) we conclude that the given linear 

transformation T is one-to-one. 
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2.

    ker T  O

This time we use the following Proposition

(5-7)     T is one-to-one  

We need to show that kernel of T consists only of the zero matrix.

Let 

11 1

1

n

m mn

a a

a a

 
 

  
 
 

A  then 

 
11 1

1

11 1

Transposing

1

0 0

0 0

T

n

m mn

m

n mn

a a

T

a a

a a

a a

 
 

  
 
 

   
   

     
   
   

A

O

The kernel of T is the n by m zero matrix O because all the entries in the matrix are zero. 

Thus    ker T  O  therefore by (5.16) we conclude T is one-to-one.

3. (a) For one-to-one we can check the kernel of T. Let
x

y

 
  
 

u then applying the given

transformation we have 

0

0

x x
T

y x

      
       

      
   which gives 0x   

This means that y can be any real number r. Thus  
0

ker T r
r

   
   

   

 which means 

   ker T  Othat  which implies that T is not one-to-one.

Is T onto? 

No because T is not one-to-one so by Proposition (5-12):  

:T V W    dim dimV W

    ker T  O

Proposition (5-12). If  is a linear transformation and  then T 

is both one-to-one and onto  .

We conclude that T is not onto. 

(b) We need to test for one-to-one and onto for the given transformation 

0x

T y y

z z

    
    

    
    
    

One-to-one: 

What is the kernel of T? 

It is the vectors in 3  which give the zero vector under the given transformation T. We 

have 

00

0   gives   , 0  and 0

0

x

T x r y zy y

z z

      
      

          
      
      

where r is any real number. 

acauser3
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   ker T  OHence  therefore T is not one-to-one. 
By Proposition (5-12) we can say that T is not onto. 

(c) For 3 3:T   given by 

x z

T y y

z x

    
    

    
    
    

 we find the kernel. 

0

0   gives  0, 0  and  0

0

x z

T x y zy y

z x

      
      

          
      
      

   ker T  OHence  therefore T is one-to-one and by Proposition (5-12):

:T V W    dim dimV W

    ker T  O

Proposition (5-12). If  is a linear transformation and  then T 

is both one-to-one and onto  .

We conclude that T is onto. 

(d) The given transformation is 

2 3

0

x y
x

T x y
y

 
    

     
    

 

. We need to find the kernel to see if T 

is one-to-one. 

02 3

0   gives  0  and  0

00

x y
x

T x yx y
y

   
     

        
      

   

   ker T  O

   dim dimV W

Thus  therefore T is one-to-one. Is T onto?

We cannot use Proposition (5-12) because we need  and in this case 

wehave    2 3dim 2   and   dim 3  .  

Let 

a

b

c

 
 

  
 
 

w  where 0c   in 3 . Then there is no vector 
x

y

 
  
 

u in2  such that 

 T u w because 

2 3

  where  0

0

ax y
x

T b cx y
y

c

   
     

       
      

   

Thus the linear transformation T is not onto because T does not fill the whole of 3 . 

In conclusion T is one-to-one but not onto. 

4. We are given the transformation  T u Au  where

1 0 0

0 1 0

0 0 1

 
 

  
 
 

A . 

How do we show this transformation is one-to-one? 
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We need to show that the kernel consists only of the zero vector. Let 

x

y

z

 
 

  
 
 

u then

1 0 0 0

0 1 0 0   gives  0, 0  and  0

0 0 1 0

x x x

T y y y x y z

z z z

         
         

              
         
         

Thus the kernel is the zero vector, that is    ker T  O . Since    3 3dim dim 3 

therefore we can use the following: 

:T V W    dim dimV W

    ker T  O

Proposition (5-12). If  is a linear transformation and  then T 

is both one-to-one and onto  .

Hence T is both one-to-one and onto. 

5. We need to show that 3 2:T P P given by  T p p  is not one-to-one but is onto. 

    implies thatT T p q p qWe use Definition (5-7) which says that                                                        to check for 
one-to-one.   
Let 3 2ax bx cx d   p and 3 2ex fx gx h   q then 

   3 2

23 2

T ax bx cx d

ax bx c


   

  

p

and 

   3 2

23 2

T ex fx gx h

ex fx g


   

  

q

Remember we need to check that     implies thatT T p q p q :

   2 23 2 3 2T ax bx c T ex fx g      p q

Equating coefficients gives , and a e b f c g   . However we do not need d to equal 

h. For d h  therefore p q . We have the same destination    T Tp q  but different

start vectors p q  therefore T is not one-to-one.

To show that 3 2:T P P given by  T p p  is onto we only need to prove that the range 

of T is the vector space of quadratic polynomials. From above we have 

  23 2T ax bx c  p

which means that  T p is a quadratic polynomial. Since we can write an arbitrary 

quadratic polynomial such as 2ax bx c   in 2P as 

3 2
2

3 2

ax bx
ax bx c cx

 
     

 

therefore the range of T is 2P which means that T is onto. 

6. We need to show that : n nT P P  given by  T p p  is not one-to-one nor onto. How

do we show that given transformation T is not one-to-one? 
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We can find the kernel of T. The kernel of T is given by a polynomial p such that 

 T  p p O

Which polynomial gives zero after differentiating it twice?

The linear polynomial ax b p  because 

  0ax b a    p

Thus a non-zero polynomial ax b p  give zero under the transformation T. Therefore

     ker ,T ax b a b     O . Since    ker T  O so using:

:T V W    dim dimV W

    ker T  O

Proposition (5-12). If  is a linear transformation and  then T 

is both one-to-one and onto  .

We have : n nT P P which means we have    dim dimn nP P therefore we can apply 

the above Proposition (5-12) and conclude that the given transformation T is neither 

onto nor one-to-one. 

7. We are given the linear transformation 3 2:T  defined by 

x
y

T y
z

z

  
   

    
   

  

. How do 

we show this is not one-to-one? 

Consider the 2 vectors 

0 5

1   and  1

2 2

   
   

    
   
   

u v  then 

   

0 5
1 1

1   and   1
2 2

2 2

T T T T

      
         

            
         

      

u v

We have    
1

2
T T

 
   

 
u v but 

0 5

1 1

2 2

   
   

     
   
   

u v . We arrive at the same destination 

   T Tu v but with different starting vectors u v . Hence T is not one-to-one. 

How do we show T is onto?

Let 
a

b

 
  
 

w  be an arbitrary vector in 2  then we need to find a vector in 3  such that 

x
a

T y
b

z

  
   

    
   

  

Let 

x

a

b

 
 

  
 
 

u then  

x
a

T T a
b

b

  
   

     
   

  

u w . Since we have found a vector u in the 

domain such that  T u w  therefore the range of T is 2  which means that T is onto. 
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8. We need to show that 2 3:T P P  given by

   2T ax bx c ax b c    

is neither one-to-one nor onto. 

Not one-to-one: 

Let 2ax bx c  u and 2dx ex f  v . If    T Tu v then we have 

     

     
   

2

2
  gives  

T T ax bx c ax b c
ax b c dx e f

T T dx ex f dx e f

      
    

      

u

v

By equating the coefficients of    ax b c dx e f      we have

  and  a d b c e f   

From and b c e f b e c f      because we could have

and  0b e f c  

This means that the vectors u and v are not identical, thus u v . We have 

   T Tu v implies u v

By (5.2) we conclude that T is not one-to-one.

Not Onto:

Let 3dxw  be a vector in 3P . Then there is no vector u in 2P such that 

  3T dx u w

By (5-9) we conclude that the given transformation T is not onto. 

9. We need to show : n nT P P given by 

 T p p

is neither one-to-one nor onto. How? 

Show that the kernel of T is not equal to the zero vector,  O . Let Cp  where C is a non-

zero constant then  

 T C p O

The kernel of T is  C C which means that    ker T  O .  

Since    dim dimn nP P so by:

:T V W    dim dimV W

    ker T  O

Proposition (5-12). If  is a linear transformation and  then T 

is both one-to-one and onto  .

We conclude that T is neither one-to-one nor onto. 

10. :T V WProposition (5-8) says that the linear transformation  is one-to-one 

  0nullity T  . 

Proof. 

  . Assume T is one-to-one. Let v  be in  ker T then by the definition of the kernel we 

have  T v O . Since T is linear so by theorem (5-1) part (a)  T O O . Thus 

   T T v O O

We are assuming that T is one-to-one therefore by (5-7)
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      implies  T T v O v O

Thus    ker T  O so we have   0nullity T  . 

  . Assume   0nullity T   then    ker T  O therefore by Proposition (5-7):

:T V W (5-7). Let  then T is one-to-one     ker T  O

The given linear transformation is one-to-one. 

■ 

11. We have to prove:

If :T V W  is a linear one-to-one transformation then for every vector w in  range T

 T v w

 range T

there exists a unique vector v in V such that . 
Proof. 

Let w be in  then by the definition of range (5.1):

(5.1) range(T )    in T V v v

There exists a vector v in V such that  T v w . Suppose there is also a vector u in V such

that  

 T u w

Since T is one-to-one so by (5.2):

(5.2) T is one-to-one      T Tu v  implies u v

We have 

      implies  T T  v u w v u

Thus the vector v is unique which completes our proof.

■ 

12. :T V WProposition (5-9) says a linear transformation  is an onto transformation

  range T W . 

Proof. 

  . Assume  range T W then by the definition of range (5.1):

(5.1) range(T )    in T V v v

We have for every w in  range T W  there is a v in V such that  T v w . Thus T is

onto.  

  . We prove W is a subspace of  range T and  range T is subspace of W then 

 range T W . 

Assume :T V W is an onto linear transformation. Let w be an arbitrary vector in W. By 

Definition (5-8) : 

Let :T V W  be a linear transform. The transform T is onto   for every w in the 

arrival vector space W there exists at least one v in the start vector space V such that  

 Tw v .
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There exists a vector v in V such that  T v w . This means that w is in  range T . Hence

W is a subspace of  range T .

Since  range T  is a subspace of W so  range T W .

■ 

13. :T V WProposition (5-10) says that a linear transformation  is onto 

   dimrank T W . 

Proof. 

This follows from Proposition (5-9) because we have :T V W is an onto 

transformation    range T W . Since  rank T  is the dimension of the range of T so

   dimrank T W .

■ 

14. Need to prove:

:T V W    dim dimV W

    ker T  O

Proposition (5-12). If  is a linear transformation and  then T 

is both one-to-one and onto  .

How do we prove this result? 

By Proposition (5-7):   

Proposition (5.16). Let :T V W  be a linear transformation between the vector spaces V 

and W. Then T is one-to-one      ker T  O .

and Proposition (5-11): 

:T V W    dim dimV W



Proposition (5-11). If  is a linear transformation and  then T 
is a one-to-one transformation  T is onto.  

Proof.  

Let    dim dimV W .

  . Let :T V W be a linear transformation and T be both one-to-one and onto. Since 

T is one-to-one so by (5-7) we  have    ker T  O . 

  . Assume    ker T  O so by (5-7) we have T is one-to-one and by (5-11) T is onto 

because    dim dimV W . 

■ 

15. We need to prove:

:T V WProposition (5-13). Let  be a linear transform which is both one-to-one and 

onto. Then the inverse transform 1 :T W V   is also linear. 

How do we prove this result? 

By using the definition of the inverse transform: 

:T V WDefinition (5-9). Let  be a bijective linear transform. The inverse 

transformation 1 :T W V   is defined as: 

   1T T  v w v w

Proof. 

acauser3
스탬프
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Since T is both onto and one-to-one (bijective), the inverse transform 1 :T W V   must 

exist. What do we need to prove? 

We are required to prove that 1 :T W V   is linear. How? 

By showing          1 1 1 1 1

1 2 1 2  and    T T T T k kT       w w w w w w where

1 2, and w w w are arbitrary vectors of the arrival vector space W and k is a scalar. 

Let 1 2, and w w w  be arbitrary vectors of the arrival vector space W. 

Since T is onto there exists vectors u and v in the start vector space V such that 

   1 2   and   T T u w v w

Applying the inverse transform definition  (5-9): 

(5-9)    1T T   u w u w

to these,   1    andT u w    2T v w ,  gives 

   1 1

1 2 and  T T  u w v w

This can be illustrated as: 

u

v

u+v

w1

w2

w1 + w2

T
 -1

T
 -1

T
 -1

V W

Since T is linear we have 

     

1 2

T T T  

 

u v u v

w w

Applying the inverse transform (5-9) to this   1 2T   u v w w gives 

 1

1 2T   u v w w (†) 

Substituting the above result of    1 1

1 2 and  T T  u w v w  into the Left Hand Side of

(†) yields 

     1 1 1

1 2 1 2T T T    w w w w

which shows that 1T   preserves vector addition. 

We also need to prove    1 1T k kT w w .

 T u w  1T  w u . Let then by the inverse transform definition (5-9) we have 
T is linear therefore 

   T k kT k u u w (*) 

Applying the inverse transform to this (*) we have 

 1k T ku w

and since  1T  w u we have our result, that is    1 1kT T k w w . Hence 1T   preserves 

scalar  multiplication. 

Thus we have shown both conditions of linearity therefore the inverse transform is linear. 

■
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16. We need to prove:

:T V W

Lemma (5-14).  

Let V and W be finite dimensional real vector spaces of equal dimension and be 

an isomorphism.  

If  1 2 3, , , , nv v v v is a basis (axes) for V then         1 2 3, , , , nT T T Tv v v v is a 

basis (axes) for W. 

Proof. 

Since :T V W  is an isomorphism so T is a bijection which means both vector spaces V 

and W are of the same dimension, say n. Also    ker T  O  so only the zero vector is

transformed to the zero vector.  

We can write the zero vector in V as a linear combination of the basis vectors 

 1 2 3, , , , nv v v v : 

1 1 2 2 n nk k k   v v v O implies  1 2 3 0nk k k k    

Because  1 2 3, , , , nv v v v is a basis for V .  

Since T is linear we have  T O O and 

   

     

1 1 2 2

1 1 2 2

n n

n n

T T k k k

k T k T k T

   

    

O v v v

v v v O

All the scalars 1 2 3 0nk k k k      so         1 2 3, , , , nT T T Tv v v v  is linearly 

independent in W. The dimension of W is n so this set forms a basis for W. 

■ 

17. We need to show that 
2x x y

T
y x y

     
    

    
 is one-to-one and onto for T to have an 

inverse linear transformation. 

How do we show that T is one-to-one and onto? 

Since    2 2dim dim  therefore we only need to show that kernel of T is the zero 

vector. We have 

2 0

0

x x y
T

y x y

       
       

      
 gives 0x y   

Thus    ker T  O  therefore T is both one-to-one and onto.

To find 1T  let 2a x y   and b x y  . We need to write x and y in terms of a and b: 

2

3    which gives   
3

a x y

b x y

a b
a b x x

 

  


  

Substituting 
3

a b
x


 into b x y  yields

3 2
  which gives  

3 3 3 3 3
x

a b a b a b b a b
b y y b



   
      
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We have 
3

a b
x


 and 

2
 

3

a b
y


 . Thus 

1 13

2 23

3

a b

a x a b
T

b y a b a b



 
        

         
        

 
 

18. We need to show that   
Ta b

T a b c d
c d

  
  

  
 is an isomorphism. How?

By showing    ker T  O . Remember the kernel is all the elements in 22M which are 

transformed to the zero vector  0 0 0 0
T
O . Hence we have 0a b c d     which

means the kernel of T is the 22O  matrix. Hence    ker T  O  therefore T is an

isomorphism.  

19. (a) Required to prove the following:

A linear transform :T V W  is an isomorphism      ker T  O .

Proof.

Since :T V W  is an isomorphism   T is invertible  T is a bijection and therefore

one-to-one. By

Proposition (5.16). Let :T V W  be a linear transformation between the vector spaces V 

and W. Then T is one-to-one      ker T  O .

We have our result that T is an isomorphism      ker T  O .

■ 

(b) If :T V W  is an isomorphism then 1 :T W V   is also an isomorphism. 

Proof. 

We have :T V W  is an isomorphism which means that T is invertible. By 

:T V WProposition (5-13). Let  be a linear transform which is both one-to-one and 

onto. Then the inverse transform 1 :T W V   is also linear. 

We can say that 1 :T W V   is linear.  Since    ker T  O  so    1ker T   O . Why?

Suppose    1ker T   O  and let w O  be in  1ker T  . Then 

 1T  w O

Using Definition (5-9):

Let :T V W  be a bijective linear transform. The inverse transformation 1 :T W V   is 

defined as: 

   1T T  v w v w

We have   T  O w O . This cannot be the case because    ker T  O . Hence our

supposition    1ker T   O must be false so    1ker T   O which means 1T   is an

isomorphism by result (a).  

■

acauser3
스탬프



Complete Solutions to Exercises 5.4    12 

(c) Required to prove that:

If vector spaces V and W are isomorphic then    dim dimV W .

Proof.

Let  dim V n . We are given that V and W are isomorphic so there is an invertible

transformation :T V W . This is a bijection which means it is one-to-one and onto.

Using:

Proposition (5.17). Let :T V W  be a linear transformation. T is one-to-one 

  0nullity T  .

We have   0nullity T  . By the Dimension Theorem:

   rank T nullity T n  (where n is the dimension of V)

Substituting   0nullity T   into this gives

 rank T n

By Proposition (5-10): 

Let :T V W  be a linear transformation. Then T is onto 

   dimrank T W

We have    dim dimW n V  . This completes our proof.

■
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