Complete Solutions 7.2 Page 1 of 12

Complete Solutions to Exercise 7.2

1. In each case we the properties of Proposition (7.9):

(a) Ifazb(modp) then |—|= U
p p
2
(b) “—]:1
p
(0) al (b| _faxb
D D D

(a) We need to establish that the square root of 35 (mod 31) exists. We have
35 = 4 (mod 31).

By Proposition (7.9) part (a):

We have %] = [% . Note that 4 = 2* so using part (b) of (7.9):
35| _ |42
31 31 31

Since the Legendre symbol [%] =1 so 35 is a quadratic residue of 31.

(b) Similarly, for the integer 71 we have
71=9 (mod 31).

Therefore, by part (a) of (7.9) we have [E] = [2 . Again 9 = 3% so by part (b)

31 31
T _
31

el

1
The Legendre symbol [%] =1 therefore 71 is a quadratic residue of 31.

of (7.9):

(c) Arguing along the same lines we have
56 = 25 (mod 31).

Evaluating the Legendre symbol gives

B85
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Hence 56 is a quadratic residue of 31.
(d) We have 94 =1 (mod 31). Applying the above Proposition (7.9) to show that
94 is a quadratic residue of 31:
-
31 31 31
Hence 94 is a quadratic residue of 31.

(e) We have 47 =16 (mod 31). Therefore
a7) _(16)_(«
31 31 31

Since the Legendre symbol [%] =1 so 47 is a quadratic residue.

2. (a) We need to test whether the square root of 46 (mod 47) exists. Note that
46 = —1 (mod 47) ; so we test whether —1 is a quadratic residue of 47. Also our

prime 47 satisfies 47 = 3 (mod 4) so by Proposition (7.11):

1 if pzl(m0d4)
1 if pES(mod4)

we have

ﬁ — __1 = —1 because 47 =3 (mod 4).
47 47

Since the Legendre symbol [%] = —1 so 46 is a quadratic non — residue of 47.

(b) We have 95 =1 (mod 47) therefore
95) (1
A7) |47)

=1

By Proposition (7.10):

p

So [i—i] = [%] =1 which means that 95 is a quadratic residue of 47.

(c) We have 90 =43 = —4 (mod 47). We can write —4 as —4 = —1x2”. Applying

the properties of the Legendre symbol we have



3.
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- o

Since 47 =3 (mod 4) so [;—71] = —1 and by applying (7.9) part (b):

—1x2?
47

=1
p

2

we have [%] = 1. Substituting

-1 =—1 and z =1 into (I) gives
47 47 s

g

Since the Legendre symbol [i—g] = —1 s0 90 is a quadratic non — residue of 47.

(d) We need to find whether the square root of 58 (mod 47) exists. Well
58 = 11 (mod 47).

We could use Euler’s criterion but that would mean we need to evaluate
47—1

112 =11%=7 (mod 47) .
Is there an easier to find whether 58 is a quadratic residue of 477

Yes, because 58 =11 = —36 (mod 47) and

—36=—-1x6".
Therefore, we have

2252

Hence 58 is a quadratic non — residue of modulo 47.

(e) We need to find whether 90 x 58 is a quadratic residue of 47. By the solutions
to parts (c) and (d) we have

el o) e -

by part (¢) by part (d)

Hence 90 x 58 is a quadratic residue of modulo 47. Note that 90 and 58 are

quadratic non — residues but 90 x 58 is a quadratic residue of 47.

(a) Clearly 5 is a factor of 18* +1 = 325. We have % =65 =5x13 so

325 = 5x5x13=5"x13
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(b) Factorizing this integer 30> +1 = 901 is more challenging. Since it is a
quadratic of the form z* 41 so the (odd) primes p must satisfy p =1 (mod 4).

Clearly 5 is not a factor of 901 but what about 137

P _ 69.31.
13
Therefore 13 is not prime factor of 901. Let’s trial 17:
@ = 53.
17
Hence 17 is a factor of 901 and 53 is prime so
901 =17 x 53.

(c) Clearly 10 =2 x5 is a factor of 53 +1 = 2810. We have

2810 = 2x 5 x 281.
We need to find the factors of 281. The simplest way to find the prime factors p of
281 is to first check that 281 is prime or composite. You can show by Corollary
(2.10) that 281 is prime.
Hence 2810 =2 x5 x 281.
(d) We are asked to factorize 60° + 1= 3601. Since this is an integer which

conforms to z* 4+ 1 so it must have prime factors p such that p =1 (mod 4).

No point trying 5. So, we trial 13:
3601

— =277
13

Now 277 is either composite or prime. By Corollary (2.10) we only need to

N277

p=1 (mod 4) and below 16. We only need to try 13 again:

=16. So, we examine prime p which satisfy

examine the odd primes below

% —21.31 (2 dp).

Since 13 is not a factor of 277 so 277 is prime. Therefore
3601 =13 x 277.

V242 +1

need to examine the odd primes p of the form p =1 (mod 4) below 24.

(e) We need to factorize 24> +1 = 577 . Since = l577J = 24 so we only

We know 5 is not a factor of 577. Only need to try 13 and 17:

ST _yu3s. 210 _33.04.
13 17

Since 13 and 17 are not factors of 577 so 577 is prime.
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(f) We need to factorize 104> +1 =10 817. The primes p must satisfy
p= 1(mod 4). Clearly 5 is not a factor of this 10 817. The next few primes of the

format p = 1(m0d 4) are 13, 17, 29 and if we divide 10 817 by each of these we
10817

find that = 373 . Therefore 29 is a factor and

10817 =29 x 373.
Need to test the primality of 373. Using Corollary (2.10) we find that

N

Clearly 373 is prime because we have tried primes larger than 19 and they did not
go into 10 817 so cannot be factors of 373. Hence 10817 =29 x 373 .

- [19.31..J =19.

(g) We are asked to factorize 302° +1=91205. Clearly 5 is factor:

91 205
=18 241.

The prime factor p of 18 241 must be of the form p = 1(mod 4). Trialling 13 and
17 we find that

18 241 18 241
= 1403.154..., =1073
So, 17 is a factor of 18 241 and 91 205. Testing 1073 for primality gives
Jio73| = 32.
Testing whether 17 and 29 are factors of 1073 we have
% =63.118..., 1073 _ 37.

Therefore 1073 = 29 x 37 which implies 18 241 =17 x1073 =17 x 29 x 37 . Hence
302” +1=91205=5x17 x29 x 37

(h) We need to factorize 1014> +1 = 1028 197 . As before we only need to examine
primes p of the form p = 1(mod 4). We trail 5, 13, 17, 29, 37, 41, 53, 61, 73, 89,
97, 101, 109, ... and we find that

1028 197
—— = 9433.
109
Evaluating [v9433| = 97 and since the first prime into 1 028 197 was 109 so none

of the earlier primes can go into 9433 because if they did then they would be
factors of 1 028 197. Hence 9433 is prime and we have
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1014*4+1=1028 197 = 109 x 9433 .

4. Proof.
Using the Legendre symbol we have

n

Let z =a" (mod p) then squaring gives z° = a™ (mod p). Hence o™ is a

quadratic residue of prime p. This completes our proof.

[
a a a a, Xa, Xa, X-+Xa
5. We need to prove |—L|[x|2X|[x.-x|2%|=|+2—3 ©|. How?
p p p p

Use mathematical induction.
Proof.
By Proposition (7.9) part (c):

a b axXb

— | x|—|=

p p p

a a a, Xa
We have the base case |+ |x|-2|= |12
p p p
Assume the result is true for n =k :
LN I Y O Y I axa,Xa,x-xa, *)
p p p p
We need to prove this for the case n =4k +1:
p p p p p p
by ()
I R Sl R al B ak“] [By the base case
p
Hence by mathematical induction we have our result.
n

kl n

a

p

b
p

el
p

b,
p

X X oo X

6. We need to prove that

Proof.
We are given that a = plkl X p2k2 X oee X pnk" so by the result of the previous

question we have
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ky X ky X eee X k, ky k, k,
al_|P XD b, P, % b, e p,
p p p p p
ky k, k,
p b p
= L X -2 X ooee X | 2
by result of p p p

previous question

This is our required result.

]
p-1
7. We are required to prove that if p =1 (mod 4) then a ? , where gecd (a, p) =1,
is a quadratic residue of p.
Proof.
We are given that p =1 (mod 4) so p = 4k + 1 for some integer k. Consider the
p-1
residue a ? :
p—1 4k+1-1
a? =a 2 =a".
p-1
By the result of question 4 we have a”* is a quadratic residue of pso a ? is a
quadratic residue of p.
]
-1 p1
8. We need to prove |—| = (—1) given that p is an odd prime.
p
Proof.
By Proposition (7.8):
E
A=y (mod p)
p
p-1
We have |— | = (—1) 2 (mod p). We are given that p is an odd prime so p > 3
p
which implies that
-1 -1
— | = (—1) 2 (mod p)
p
pl _ pl1
(—1) can only take values of 1 or —1 so |—|= (—1) 2.
p
]

9. (i) We are asked to show that if p ‘ (532 + 1) then p=1 (mod 4).



10.
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Proof.

From the definition of congruence, we have
p‘ (x2 —{—1) s 2P +1= O(mod p) & 2 = —1(m0d p)
Hence z° = —1(m0d p) has solutions because we are given p ‘ (J}Q + 1) SO
p=1 (mod 4). Why?
Because by question 6 of Exercises 7.1:
—1 is a quadratic residue of an odd prime p < p=1 (mod 4).
we have —1 is a QR implies that p =1 (mod 4).

This completes our proof.

(ii) We need to prove there are an infinite number of primes of the form 4n + 1.
Proof.

Assume there are only a finite number of primes p,, p,,---, p_ of the form

4n 4 1. Consider the number

N:(2><p1><p2 ><-~-><pm)2 +1.
Let p be a prime factor of N. By part (i) we have p=1 (mod 4). Since p ‘ N so
p;!pl, p,, -, p, because if p was equal to one of these then p ‘ 1.

Hence p is not amongst the finite list of primes p, p,,---,p and p =1 (mod 4)

therefore p = 4n +1 which implies there are infinite number of primes of the form

4dn +1.

2
We need to prove that ab” —|&
p p
Proof.
By Proposition (7.9) part (c):
al |b|_laxb
p p p
b’ a ?
We have |— | =|—|x|—|. By Proposition (7.9) part (b):
p p




11.

12.
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2
2|
p
b2 2 2 a b2
We have |—| = 1. Substituting this |—|=1 into the above | —|=|—|x|—
p p p p p
yields
ab’ _[2]
p p

This completes our proof.

a

p—1
We are required to prove that Z
p

a=1

= 0. How do we prove this?

We use Proposition (7.4):

: -1 : .
Let p be an odd prime. Then there are exactly pT quadratic residues and

-1 . .
pT quadratic non-residues of p.

Proof.

o -1 . . .
By the above proposition we have exactly pT quadratic residues which means

residues we have

=1 and for the remaining P

p

for these residues we have

a

p

= —1. Hence

p—1

2

a=1

a

p

This is our required result.

_-y) oy o

2 2

(a) We need to prove r*" is a quadratic residue of p.
Proof.

The quadratic congruence

2 =r" (mod p)

~—~—

has a solution because = = r" (mod p| satisfies this congruence. Hence r*" is a

quadratic residue of p.
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1 is a quadratic non - residue of p.

(b) We need to prove r
Proof.

Consider the quadratic congruence
g’ =t (mod p)
Taking the ind, of both sides of this equation which converts into linear form:
2xind (z)=(2n+1)Xind (r)=(2n+1) (mod p —1).
(#) = (20 +1)xind, () = (20 +1) | )
=1

The gcd(2, p— 1) =2 but 2 / (2n + 1) which implies this congruence

2xind, (2) = (274 1) (mod p—1).

2n+1

has no solutions, so r is a quadratic non - residue of p.

(c) Half the residues are quadratic residues and half are quadratic non-residues of

modulo p.
Proof.
By the Primitive Root Theorem (6.22):

Every prime p has a primitive root.

we have a primitive root r modulo p.

The reduced residue system modulo p is given by {1, 2,0, p— 1} and each of these

can be expressed as " = a(mod p) where a € {1, 2, p— 1}. The even powers

2m

such as 7" in this list satisfy the quadratic congruence
2
m? = r?m = (Tm> (mod p)
By Proposition (3.14) (b):

=0 (mod p) & a=4b (mod p)

We have x = +r" (mod p) so these are the quadratic residues of p. There are

residues in {1, 2, p— 1} which have base r with an even index.

Hence there are £— quadratic residues of p.

Additionally, there are i residues in {1, 2, p— 1} which have no

solutions to the quadratic residues z° = a(mod p) where a € {1, 2 - p— 1} SO

there are £— quadratic non — residues of p. This completes our proof.
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13. We need to find the quadratic residues of 17. We are given that 3 is a primitive

14.

root of 17 so we need to find the even powers of 3. Why?
By the result of the previous question part (a) we showed that r*" is a quadratic

residue of prime p.

w
'S
Il
w Ne}
S
~
[N
Il
Ne
S
Il
0.0)

1=-4=13 (mod 17) (%)
F=3"%x3F=-4x9=-36=-2=15 (mod 17)

The quadratic residues of 17 are 1, 2, 4, 8, 9, 13, 15 and 16.
To find the square roots of 13(m0d 17) we need to solve the quadratic
i 13(m0d 17)

By the above we have that 3 is a primitive root of 17 so taking indices to the base

3 which converts the quadratic into linear form we have
2 ind, (z) = ind, (13)(mod 16)
By (*) we have ind, (13) = 4. Substituting this into the above yields
2xind, (z) = 4(mod 16) = ind, (z) = 2(mod 8).
Hence the square roots of 13(mod 17) are

r=43=49=9 —9=09, 8(mod17).

We are given that 2 is a primitive root of 101 and we need to solve the quadratic

i 14(mod 101). Taking indices to the base 2 to convert the quadratic into
linear form gives
2 ind, (z) = ind, (14)(mod 100) (1)
We must find what power of 2 gives 14 modulo 101. Computing powers of 2:
2" =128 = 27 (mod 101
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2' = 27 x2 = 54(mod 101
2" = 54x2 =108 = 7(mod 101
2" = 7x2 = 14(mod 101
From the last result we have ind, (14) =10 and substituting this into () gives
2xind, (z) = 10(mod 100) = ind, (z)= 5(mod 50).
Therefore, the square roots of 14(mod 101) are given by

r=42 =432=232 —32=32 69(mod 101).



