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Complete Solutions to Exercises 6.3

1. We need to find whether 3 and 5 are primitive roots of 7. How?

Since 7 is prime so (b(?) = 6 and the only positive divisors of 6 are 1, 2, 3 and 6. In

each case we need to evaluate these indices to the bases 3 and 5.

(a) We have
3 =9=3%1(mod7)
3" =27 =6#1(mod 7|
3" =1 (mod 7|
Therefore 3 is a primitive root of 7.

(b) Checking if 5 is a primitive root of 7:
5 =25=4%1(mod 7
5° E4x5520567‘é1(m0d7>

By Euler’s Theorem we have 5° =1 (mod 7). Hence 5 is a primitive root of 7.

2. We are required to find whether 3, 5 and 7 are primitive roots of 11. As 11 is prime

SO d)(l 1) =10 and the only positive divisors of 10 are 1, 2, 5 and 10.
(a) Checking whether 3 is a primitive root of 11:
3" =9%1(mod 11
3" =243 =1 (mod 11)

Therefore 3 is not a primitive root of 11.

(b) Using similar evaluations for base 5 we have

5 =25=3%1(mod 11]
5 =3125=1 (mod 11)

5 is mot a primitive root of 11.

(c) Repeating the above calculations for 7 we have

7' =49=5%1(mod 11
7" = 16807 = 10 # 1 (mod 11]

By Euler’s Theorem we have 7" =1 (mod 11). Hence 7 is a primitive root of 11.
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3. We need to show that 2 is a primitive root of 9. How?
First, we find ¢(9):

1
9)=¢(3*)|=9|1—=|=6.
ofs) = o(#) =913
The divisors of 6 are 1, 2, 3 and 6. Evaluating these indices with base 2:
2=2#1 P =4%1 2 =8%1(mod9).

Hence the order of 2 is 6 = ¢(9> so 2 is a primitive root modulo 9.

4. We are required to show that 5 is a primitive root of 49. We first evaluate (b(49>:

6(49)=9(7) =7 [1—%] =42.

The only divisors of 42 are 1, 2, 3, 6, 7 14, 21 and 42. Finding these indices with
base 5:

5 =25% 1 (mod 49)
5' =125 =27 #1 (mod 49)
5° = 15625 = 43 # 1 (mod 49)
5" = 78125 =19 # 1 (mod 49)
5 =19 =361 =18 # 1 mod 49)
5% = (57)3 = 19" = 6859 = 48 # 1 (mod 49)

Hence the order of 5 modulo 49 is 42 = ¢(49>. Therefore 5 is a primitive root
modulo 49.

5. This time we need to show that 7 is not a primitive root of 19. Since 19 is prime we
have
(b(19):19—1:18.
The divisors of 18 are 1, 2, 3, 6, 9 and 18. Evaluating these indices to the base 7:
7' =49 =11%1 (mod 19)
7' =7 xT=11x7=77=1{mod 19)

Hence the order of 7 modulo 19 is 3 and (b(19) =18 = 3 so 7 is not a primitive root
of 19.
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6. We first need to find a primitive root of 11. We should first try 2 because it is the
smallest positive integer after 1. Clearly 1 cannot be a primitive root of 11 because
1" =1{mod 11).

Since 11 is prime we have qﬁ(ll) =10 and the only divisors of 10 are 1, 2, 5 and 10.
2" =4 (mod 11)
2" =32 =10 (mod 11]

The order of 2 modulo 11 is 10 so it is a primitive root of 11. We use 2 as a base to
find the order of the residues modulo 11. We have

2'=2 (mod 11]

2 =4 (mod 11)

2° = (mod 11)

2'=16=5 (mod 11)

2 =32=10 (mod 11)

2 =10x2=20=9 (mod 11]

7 =9x2=18=7 (mod 11)

2 =Tx2=14=3 (mod 11)

2 =3x2=6 (mod 11]

2" =6x2=12=1 (mod 11]
Creating a table of indices:

a 1 2 3 4 ) 6 7 8 9 10

ind, (a) | 10 | 1 8 2 4 9 7 3 6 5

(a)  We are required to solve the congruence 2z* =7 (mod 11). We convert this
2! =7 (mod 11) to linear form by taking indices of both sides:
ind, (22") = ind, (7).

Using the rules of indices of Proposition (6.16):

(a) ind (ab)=ind, (a)+ind, (b) (mod ¢(n))

(b) ind, (a") =k ind (a) (mod (n))

(c) ind, (1)=0 (mod qs(n)) and ind, (r)=1 (mod ¢(n))
On ind, (2¢") = ind, (7) with ¢(11) =10 gives

ind, (2) + ind, (2') = ind, (7) (mod 10)
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ind, (2) + 4 ind, (z) = ind, (7) (mod 10) ()
From the above table we have ind, (2) =1 and ind,(7)= 7. Substituting these
into (¥) gives
144 ind, (z) = 7 (mod 10)
4ind, (z) = 6 (mod 10)
The gcd(4, 10) —2 and 2 ‘ 6 therefore there are 2 solutions. From the last line we
have
4ind, (z) = 6 (mod 10) = 2 ind,(z) = 3 (mod 5)
= ind,(z) =4 mod 5)
From ind, (z) = 4 (mod 5] we have ind, () =4+ 5k where k is an integer. Since
we have 2 solutions so substituting k = 0, 1 gives
ind, (z) =4, 9 (mod 10)
Using the above table in reverse direction yields
r=5 6 (mod 11)
(b)  This time we need to solve the quadratic 3z* =5 (mod 11). Again we use the

above table and the rules of indices given in Proposition (6.16) to convert the given
quadratic into linear form. We have
ind (3:52) = ind, (5) (mod 10)
ind (3 + ind (a:Z) ind, (5) (mod 10)
ind (3) +2ind ( ) ind, (5) (mod 10)

By the above table we have ind, (3) =8 and ind, (5) = 4. Putting these into the
above derivation yields
8+2ind,(z)=4 (mod10) = 2ind,(z)=-4=6 (mod10).
We need to solve this equation 2 ind, (z) = 6 (mod 10). The ged (2, 10) — 2 and
p ‘ 6 so we have 2 solutions. Dividing 2 ind, () = 6 (mod 10) by the ged gives
ind, () = 3 (mod 5).
Hence ind, ()= 3 + 5k . Substituting k =0, 1 gives
ind, (z) =3, 8 (mod 10).

Using the above table in reverse order yields
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r=28, 3 (mod 11).
Our solutions are x = 3, 8 (mod 11).

(¢)  We are required to solve the congruence 5z° = 6 (mod 11). We have
ind, (527) = ind, (6) (mod 10).

Using the rules of indices we have

ind, (5) + ind, (2°) = ind, (6) (mod 10)

ind, (5) + 5 ind, (z) = ind, (6) (mod 10)

5 ind, (z) = ind, (6) — ind, (5) (mod 10) (1)
By using the table which we established at the start of this question we have
ind, (6) =9 and ind, (5) = 4.
Putting these values into (1) gives
5 ind, (z) = 9~ 4 =5 (mod 10).
The ged(5, 10)=5 and 5 ‘ 5 so we have 5 incongruent solutions to this
congruence. Dividing by 5 yields ind, (z) =1 (mod 2) .
This ind, (z) = 1 (mod 2) implies ind, (x) =1+ 2k where kis an integer.
Substituting k=0, 1, 2, 3, 4 gives
ind, (z)=1 3, 5, 7, 9 (mod 10).

Using the table again in reverse direction we have
r=2 8 10, 7, 6

=2 6, 7, 8 10 (mod 11)

. Since 19 is prime so (b(19> =18.
(a) We need to solve 6z° =7 (mod 19) . Converting this to linear form by taking
ind, of both sides gives
ind, (6305) =ind, (7) (mod 18) .
Using the rules of indices gives
ind, (6) + 5 ind, (v) = ind, (7) (mod 18] ()
Evaluating powers of 2;

2 =32 = 13(mod 19

~—~—

L2 El3x252657(m0d19>
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Therefore ind, (7) = 6. Working out other powers of 2 gives
2" =7x2=14(mod 19) and 2" =14x14 =196 = 6(mod 19).
So we have ind, (6) = 14. Putting these ind, (6) =14 and ind, (7)=6 into (*)
gives
1445 ind, (z) = 6 (mod 18]
5ind,(z)=6-14= -8 =10 (mod 18]
The gcd(5, 18) —1 and of course 1 ‘ 10 so we have a unique solution. Hence
5ind,(z)=10 implies ind,(z)=2 (mod18)

From ind,(z)=2 (mod 18) we have z=2'=4(mod 19).

(b) We need to solve 4z’ = 4 (mod 19). Using the rules of indices we have

ind, (42°) = ind, ( (mod 18)
ind, (4)+1nd ( ):md (4) (mod 18)
ind, (4)+9 ind ( )E ind, (4) (mod 18) [Linear Form]
Clearly ind, (4) =2 because 2° = 4(mod 19). Substituting this into the above
derivation gives
2+9ind,(z)=2 = 9ind,(z)=0 (mod18).

The gcd(g, 18) -

0 so the given equation has 9 incongruent solutions.
Dividing 9 ind, (:c) =0 (mod 18) through by 9 gives
ind, (33) =0 (mod 2) .
Hence ind, (a:) = 2k where k is an integer. Substituting £ =1,2, ---, 8 9 yields
ind, (z) =2 4, 6, 8 10, 12, 14, 16, 18 (mod 18).
Therefore
T = 22 24 26 28 210 212 214 216 218
Multiplying the
=4, 16, 7 ,9 17, 15 11, 6, 5 l(mod 19) yme

by part (a) previous term by 2 = 4

Putting the residues into ascending order

r=1 4, 5 6, 7, 9 11, 16, 17 (mod 19).

(c) We are required to solve z° =7 (mod 19). Taking ind, of both sides gives
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ind, (") = ind, (7) (mod 18)
6 ind, (z) = ind, (7) 6 (mod 18)

Rl

by part (a)

We must find a solution of 6 ind, (x) =6 (mod 18) . The gcd(6, 18) =6 and 6 ‘ 6
so we have 6 incongruent solutions. Dividing through by 6 gives
ind, (x) =1 (mod 3).

Hence ind, (:z:) =14 3k where £ is an integer. Since we have 6 solutions so
substituting £k =0, 1, 2, 3, 4, 5 gives

ind, (z)=1, 4, 7, 10, 13, 16 (mod 18).
Therefore

r=2', 2%, 27, 2 2V 2°
=2, 16, 14, 17, 2, 5 (mod 19) [By parts (a) and (b)]

We still need to find z = 2" (mod 19). Well

2% =27 x2° = 14x T = 98 = 3(mod 19)
Placing these residues into ascending order gives

r=2 3 5 14, 16, 17(mod 19)

. First we show that 3 is a primitive root of 17. We have (b(l?) =16.
The divisors of 16 are 1, 2, 4, 8 and 16. Finding the indices of these with base 3:
P=9#1 (mod 17)
3t =9’ ESlElBgél(modl?)
3 =(3') =13 =169 =16 £ 1 (mod 17
Hence 3 is a primitive root of 17 because the order of 3 modulo 17 is (b(l?) =16.
Evaluating the indices of 3:
3=3(mod 17)
3° =9 (mod 17
3" =9x3 =27 =10 (mod 17
3' = 13(mod 17)
8" =13x3 =39 = 5(mod 17)
3" = 5x3=15(mod 17)
3" =(-2)x3=~6=11(mod 17)
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3 = 16(mod 17)
3" =(-1)x3=-3= 14(mod 17)
30 =(-3)x3=-9= s(mod 17)
3! 58><3524E7(m0d 17)
312 E7x352154(m0d 17)
3" =4x3= 12(m0d 17)
34 =12x3=136= Q(mod 17)
3% =2x3= 6(mod 17)
3 =1(mod 17)

Using this information to complete the table:

a 11213456 |7 ]8|9 10111213 |14 |15 |16

ind, (a) | 16 {14 | 1 | 12| 5 | 15|11 |10 |2 |3 | 7 |13 4|9 |6 |8

We use this table to solve the given equations.

(a) We are given the equation z' = 4 (mod 17). Taking ind, of both sides gives
ind, (') = ind, (4) (mod 16)
Using the established rules of indices given in Proposition (6.16):
(a) ind (ab)=ind, (a)+ind (b) (mod ¢(n))
(b) ind, (") =k ind, ( (mod ¢(n))
(c) ind (1)=0 (mod 6(n )) and ind (r)=1 (mod <b(n>)
We have
4ind, (z) = ind, (4) (mod 16).  [Linear Form|
By the above table we have ind, (4) = 12. Substituting this into the above yields
4ind, (z) = 12 (mod 16).
The gcd(4, 16) —4 and 4 ‘ 12 so we have 4 solutions. Dividing this
4ind, (z) =12 (mod 16)
by 4 gives
ind, (z) = 3 (mod 4).
This ind, (z) = 3 (mod 4) implies that ind, (z) =3+ 4k As we have 4 solutions so
substitute k=0, 1, 2, 3 into ind, (z)= 3+ 4k
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ind, (z)=3, 7, 11, 15 (mod 16).

Finding these numbers in the bottom row and reading the corresponding numbers

in the top row we have
r=10, 11, 7, 6 (mod 17).
Putting these in ascending order of residues we have x =6, 7, 10, 11 (mod 17) .
(b) We need to solve 12z° =5 (mod 17) . Using ind; we have
ind, (122" ) = ind (5) (mod 16)
ind, (12) + 8 ind, (z) = ind, (5) (mod 16)  [Linear Form]
By the above table we have ind, (12) =13 and ind, (5) = 5. Putting this into the
above derivation yields
13+8ind,(z)=5 = 8ind,(z)=5-13=-8=8(mod 16).
The gcd(& 16) =8 and 8 ‘ 8 so we have 8 incongruent solutions. Therefore

8 ind.

3

(:z:) = 8(m0d 16) = ind, (x) = l(mod 2).
Our 8 solutions are ind, (x) =1+2k for k=0, 1, ---, 7:
ind, (z)=1, 3, 5, 7, 9, 11, 13, 15 (mod 16) :

Locating these in the bottom row of the table and reading off corresponding entries

in the top row gives

r=3, 10, 5, 11, 14, 7, 12, 6 (mod 17)
Putting these in order gives

r=3 5 6 7, 10, 11, 12, 14 (mod 17)
(c) This time we have a very similar equation to part (b) with only the residue on
the right - hand side is 6 rather than 5. We can use the answer to part (b) to solve
this 122° =6 (mod 17) equation.

ind, (122*) = ind, (6) (mod 16)

ind, (12) + 8 ind, (z) = ind, (6) (mod 16)

We have ind, (12) =13 and ind, (6) =15 so

13+ 8ind, (z) =15 = 8ind,(z)=15—13 =2(mod 16).

This time we have to solve 8 ind3 (:c) = Q(mod 16). How?
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First, we check that the ng(S, 16) = 8 divides the right-hand side. However,
8 / 2 so the given equation has no solution.

(d) We are required to solve 5° = 3 (mod 17). Using ind, on this congruence

ind, (5") = ind, (3) (mod 16)

z ind, (5) = ind, (3) (mod 16)
By using the above table we have ind, (5) =5 and ind, (3) = 1. Substituting this
gives

br=1 (mod 16) .
The ged (5, 16) =1and 1 ‘ 1 so we have a unique solution. Hence our solution is

r=13 (mod 16).

. We need to find z the least non-negative residue such that 7'76'" =z (mod 17) .
Taking ind; of this we get
ind, (71006100) = ind, (x) (mod 16) .
Using the rules of indices established in Proposition (6.16) we have
ind, (7100) + ind, (6100> = ind, (:U) (mod 16)
100 ind, (7) 4100 ind, (6) = ind, (=) (mod 16)
100[ind3 (7) + ind, (6)] =ind, <x) (mod 16)
4 lind, (7) + ind, (6)| = ind, (=) (mod 16] (1)

3
because 100=4 (mod 16)

By the table of the previous question, which is duplicated here:

a 11213456 |7 ]8|9 10111213 |14 |15 |16

ind,(a) | 16 |14 | 1 |12 | 5 | 15|11 [10 |2 | 3 | 7 [13]| 4 | 9 | 6 | 8

We have ind, (7) =11 and ind, (6)=15. Putting these into (f) gives
4114 15] = 4]26| = 4[10| = 40 = 8 = ind, (=) (mod 16).
We have ind, (z) =8 (mod 16) . By using the above table in reverse direction
=16 (mod 17).

The least non-negative residue is 16 modulo 17, that is 7'6'"" = 16 (mod 17).
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10. (a) We have to solve 7" =3 (mod 13). Using the given table:

a 1 2 3 4 ) 6 7 8 9 10 11 12

ind,(a) | [ 12| | 1| 4] 2| 9| |5| 11| |3| 8| 10| 7 | 6

Taking ind, of both sides of 7* = 3 (mod 13) we have
ind, (7°) = ind, (3) (mod 12)
z ind, (7) = ind, (3) (mod 12
11z =4 (mod 12 = z =8 (mod 12]
Our solution is # =8 (mod 12).

(b) We need to find the remainder of 579" after dividing by 13. This means
solving the equation 579" = ¢ (mod 13) where z is the least non-negative
residue.
Applying ind, of both sides of 579" =z (mod 13) and using the rules of indices
ind (5100750999) =ind, (a:) (mod 12)
ind, (5 + ind, (7) + ind, (9" ) = ind, (=) (mod 12|
100 indQ( )—l— 50 1nd2( )—l— 99 ind, (9) = ind, (l‘) (mod 12)
4 ind, (5)+ 2 ind,(7)+ 3  ind,(9)=ind,(z)(mod 12] (*)

Because 10054(mod 12) 5052(mod 12) 99= s(mod 12)

By the given table we have

ind, (5)=9, ind,(7)=11 and ind,(9)=8.
Substituting these into (*) gives

(4x9)+ (2 x11) + (3% 8) = ind, () (mod 12)

82 =10 = ind, (z) (mod 12)
From the given table we have ind, (:c) =10 (mod 12) gives
=10 (mod 13).

Dividing 5'"7°9" by 13 gives remainder 10.
(c) First, we establish under what conditions the given congruence has solutions.
We need to find a such that z* =9 (mod 13) has solutions. Taking ind, of this:

ind, (z*) = i

alnd()

(9) (mod 12)
( ) (mod 12) [Linear Form

By the given table ind ( ) Putting this into the above derivation



11.

Complete Solutions 6.3 Page 12 of 26

a ind, (:1:) =8 (mod 12) .
Let g = ged (a, 12). Hence this congruence can only have solutions if g | 8. The
only divisors of 8 are 1, 2, 4 and 8. Therefore we can only have solutions provided
g=1 g=2 g=4, g=8.
The integers a which are relatively prime to 12, that is ¢ =1 are
1,5, 7 and 11.
The integers a such that gcd(a, 12) =2 are
2 and 10.
The integers a such that gcd(a, 12) =4 are
4,8
We cannot have gcd(a, 12) = 8 because 8 / 12.

Summarizing these results, we have solutions if ais 1, 2, 4, 5, 7, 8, 10 and 11.
The remaining natural numbers below 12 are 3, 6, 9 and 12.

Hence if a =3, 6, 9, 12 we have no solutions.

We need to find a such that az’ =8 (mod 17). We have already established a table

for the primitive root 3 of 17 in question 8:
a 1123|456 |7|8[9|10|11|12|13|14|15]16
ind, (a) |16 |14 | 1 |12 5 |15 11 (10| 2 |3 | 7 [13]| 4 [ 9|6 |8

Using ind, to convert into linear form on the given equation yields

ind, (a) + 6 ind, (x) = ind, (8) (mod 16)

ind, (a) + 6 ind, () = 10 (mod 16)

6 ind, (z) =10 - ind, (a) (mod 16) ()
The gcd(G, 16) =2 so the equation (f) will only have a solution if
2| [10~ind, (a)] or 10-ind,(a) = 25.
By examining the bottom row of the table we know this 10 —ind, (a) = 2k is
satisfied if ind, (a) is even:
ind, (a) =16, 14, 12, 10, 2, 4, 6, 8

Using the table in the reverse direction therefore

a=1 2 4 8 9, 13, 15 16 (mod 17).
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The integer a must satisfy 1 <a <16 so
a=1 2 4, 8 9, 13, 15, 16.

For this question we use Proposition (6.17):

Let n have a primitive root and ged (a, n) = 1. The congruence
" =a (mod n)

has a solution &

aO(n)/g =1 (mod n) where g = gcd(m, ¢(n>>
(a) We are given the cubic equation z° = 89 (mod 197). Both 89 and 197 are

prime so gecd (89, 197) = 1. We also need to evaluate (b(197) which is equal to 196.
Let
g= gcd(3, 196) —1.
For the given equation to have a solution we have to check that
89 = 89" =1 (mod 197).
By Euler’s Theorem (5.14):
a¢<") =1 (mod n)
The above result 89'° =1 (mod 197) is true so the given congruence

7" = 89 (mod 197)
is solvable.
(b)  We have the same numbers as part (a) except the index this time is 2
(quadratic rather than cubic). We have g = ged (2, 196) =2.
We must check whether
89" = 89™ =1 (mod 197).
Let z = 89" then
=1 (mod 197) = =1 (mod 197) or v=-1 (mod 197) .
We only need to check some of the divisors of 98 which are 1, 2, 7, 14, 49, 98 :
89" = 7921 = 41 (mod 197
89" = (89°) 89 = 41° x 89
= 68921 x 89 = 168 x 89 = 14952 =177 = —20 (mod 197)
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89'* = (897)" =(~20)" = 400 = 6 (mod 197]
89 = (89") = 6" = 279936 = 196 = —1 (mod 197|
Hence 89” #1 (mod 197) therefore the given equation z° = 89 (mod 197) is not

solvable.

(c)  This time we need to check whether z° =197 (mod 89) is solvable. First
note that 197 =19 (mod 89) which means we look at the equivalent equation

#* =19 (mod 89)
We have ¢(89) = 88 and the gcd(2, 88) = 2. By the above Proposition (6.17) the
equation z° =19 (mod 89) has a solution if and only if

88/2

19%? =19 =1 (mod 89).

Examining the powers of some of the divisors of 44:
19" = 361 = 5 (mod 89).
19" = (19°) x 19

=5 x19=3125x19 = 1019 = 190 = 12 (mod 89)

19 = (19"} = 12' =20736 = 88 = ~1 (mod 89|
Hence the equation z* =197 (mod 89) has no solutions.
(d) We need to check if z° = 218 (mod 111) is solvable. First note that

218 = —4 (mod 111).

We see if we can solve the easier equivalent equation z* = —4 (mod 111). How?
By using Proposition (6.17):
Let n have a primitive root and ged (a, n) = 1. The congruence

2" =a (mod n)
has a solution <

a¢(")/g =1 (mod n) where g = gcd(m, qb(n))

We need to find gb(lll). The prime decomposition of 111 is 111 =3 x 37.
The Euler totient function (b(lll) is given by
$(111) = ¢(3) x ¢(37) = 2x 36 = 72,
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Let g = gcd(2, 72) = 2. We need to check whether
(~4)"" =(~2)" = 2™ =1 (mod 111).
We use Euler’s Theorem (5.14):
a¢<") =1 (mod n)
Since d)(lll) =72 502" =1 (mod 111). Therefore, the given quadratic equation
7 =218 (mod 111

is solvable.

Again, we use Proposition (6.17):
Let n have a primitive root and ged (a, n) = 1. The congruence
2" =a (mod n)

has a solution <

aO(n)/g =1 (mod n) where g = gcd(m, ¢(n>)

(a) We have to find the number of solutions of z* = 2 (mod 29). We know that 29
is prime so ¢<29) = 28. The gcd(3, 28) =1 so we have solutions provided
o —9® =1 (mod 29).
By Euler’s Theorem (5.14):
o =1 (mod n)
We have 2% =1 (mod 29) so 2’ =2 (mod 29) has solution(s). As gcd (3, 28) =1

therefore we have a unique solution.

(b) We have to find the number of solutions of z'° = 25 (mod 29). The
gcd(16, 28) —4.

The given equation will have solutions provided

257" =957 =1 (mod 29).

28/4

We need to find powers of 25. To reduce the arithmetic we note that

%5 = —4 (mod 29).

7
It is simpler to evaluate (—4) =7 (mod 29):
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(~4) =64 =6 (mod 29)

_ [(_4)3 % (~4)
(~6) x(~4)
=36x(-4)=7x(-4)=-28=1 (mod 29)

Since (—4)7 =1 (mod 29) so the given equation has solutions. Because

gcd(16, 28) =4 so we have 4 incongruent solutions to z'° = 25 (mod 29).

14. (i) We are asked to show that 3 is a primitive root of modulo 223. First
gcd(3, 223) =1 so 3 could be a primitive root. We are given that 223 is prime so
¢<223) = 222 and divisors of 222 are {1, 2, 3, 6, 37, 74, 111, 222} . We need to
evaluate each of these indices {1, 2, 3, 6, 37, 74, 111, 222} with base 3 and show
that the last index, 222, is the only one which gives 1(mod 223). We know this
index does by Euler’s Theorem. Clearly the first three indices don’t. Computing the

remaining indices to the base 3 gives
3% =729 = 60 £ 1(mod 223)

3

3375(36)“><35606><35(602) « 3
= (3600) x 3 = 32" x 3 =32 768 x 3
= 210x3=630=184 = —39,7:Z1(m0d 223) (1)

3" = (337)2 = (~39) = 1521 =183 = —40£1(mod 223) (*)
311 =37 x 37 = (—40)x (~39) = 1560 = 222 = —1(mod 223) (**)

Hence 3 is a primitive root of modulo 223.

(i) We are asked to solve z° =183 (mod 223) . Taking indices of both sides to the
base 3 gives 2 ind, (:c) = ind, (183) (mod 222). From (*) we have
ind, (183) = 74.
Substituting this ind, (183) = 74 into 2 ind, (x) = ind, (183)(mod 222) gives
2 ind, (z) = 74(mod 222).
The gcd(2, 222) =2 and 2 ‘ 74 so there are two incongruent solutions to the given

quadratic. We can divide both sides of the above congruence by 2:
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ind, (z) = 37(mod 111) = ind, (z)=37, 37 +111=37, 148(mod 222)
The z values are given by

¢ =3" 3 (mod 223)

(1):

We computed the first of these in part (i)
z=3" =184(mod 223
By Proposition (3.14) (b) we have

o =0 (mod p) & a=+b (mod p)
This says that if x =184 (mod 223) is a solution then so is
z=—184 = 39(mod 223).
Our solutions are x = 39, 184 (mod 223) to the quadratic z° = 183 (mod 223) .

We also need to solve the Diophantine equation z° = 183 + 223y . The given

congruence 1’ = 183(mod 223) means that z° is 183 more than a multiple of 223;

that is * = 183 4 223y . Using the solution z = 39 gives

39° —183
223

Hence x = 39, y = 6 is a solution. Another solution can be obtained by

39° =183 +223y = y = 6

substituting = = 184 which gives

184* —1

Therefore z =184, y =151 is also a solution.
(iii) This time we have to solve the cubic z° = —1(m0d 223). The procedure is
identical to part (ii). Taking indices gives

3 ind, (x) = ind, (—1) (mod 222) [Linear Form]
From (**) of part (i) we have

ind, (~1) = 111.
Substituting this into the above congruence yields
3 ind, (z) = 111(mod 222)

The gcd(?), 222) =3 and 3 ‘ 111 therefore the cubic congruence has three
incongruent solutions. Simplifying 3 ind, (:1:) = 111(mod 222) gives

ind, (x) = 37(m0d 74)



15.

Complete Solutions 6.3 Page 18 of 26

By the definition of congruence we have ind, (:L') = 37 + 74k where k£ is an integer.
Substituting £ =0, 1, 2 into this yield
ind, () = 37, 37 + 74, 37 +2(74) = 37,111, 185 (mod 222) .
Our three solutions are given by
r = 3% 31 gl (mod 223)
The first two have been evaluated in part (i) by (1) and (**):
r =3 31 =184, 222(mod 223)

Just need to compute the last index 185 to the base 3:

1=3" =3" x3" = (~1)x(~40) = 40(mod 223]
Our solutions to z° = — (mod 223) are r = 40, 184, 222(mod 223).

To solve the Diophantine equation, we have z* = —1(mod 223) which implies that

2" is one less than a multiple of 223 so

=223y —1
. . z’ +1 o . L
Transposing this we have y = . Substituting x = 40, 184, 222 into this gives
3
y = 40° +1 _ 987
223
3
y = w = 27 935
223
3
= w =49 063
223

Our solutions are {x =40, y = 287}, {x =184, y=27 935} and

{x — 999 y =49 063}.

(a) We are asked to show that 1 <ind (a) < (b(ﬂ)
Proof.
We are given that ris a primitive root of n. Therefore, the order of r is ¢(n) The
integer a is relatively prime to n so

rind7‘(a) = a(mod n)
The integer a is a member of the reduced residue system modulo n therefore the
index of r which generators a must be < (b(ﬂ) Hence 1 <ind, <a> < (b(ﬂ) which is

our required result.
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(b) We need to show that Proposition (6.16) part (c):
Proof.

Need to prove ind (1) =0 (mod gb(n) and ind (r) =1 (mod gb(n)):

~——

By (6.13):
P = g (mod n)

We have

=1 (mod n).
Also r° =1 (mod n) Equating these we have

=0 (mod n).
Applying Proposition (6.6) to this gives
ind (1)=0 (mod ¢(n)).

For ind (r)=1 (mod ¢(n)) is Proposition (6.14).

16. The given equation 7z° =6 (mod 13) is the same as the one in Example 19 but we

are asked to use the primitive root 7 modulo 13:

=7 (mod 13)

7 =49=10 (mod 13)
7'=10x7=70=5 (mod 13|
7'=5x7=35=9 (mod 13
7' =9x7=63=11 (mod 13
7' =11x7=77=12 (mod 13)

7 = (—1)X7E —7=6 (mod 13)
TP=6x7=42=3 (mod 13)
7"=3x7=21=8 (mod 13)
7' =8x7=56=4 (mod 13|
7'=4x7=28=2 (mod 13)
™™=1 (mod 13)

The table for primitive root 7 is:
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a

1 2 3 4 5 6 7 8 9 10 11 12

ind.(a) | 12 | 11| 8 |10 | 3 | 7 | 1L | 9| 4] 2|5 |6

For 72' =6 (mod 13) we have
ind, (7)+6 ind, (z) = ind, (6) (mod 12),
Using this table to find ind. (7) and ind_ (6) gives
146 ind, (z) = 7 (mod 12
6ind, (z)=6 (mod 12|

—

Again the gcd(6, 12) =6 and 6 ‘ 6 which means we have 6 incongruent solutions.
Simplifying the above equation 6 ind. (x) =6 (mod 12) yields
ind_ (:1:) =1 (mod 2).
Recall that ind, (x) =1 (mod 2) implies
ind. (:v) =1+ 2k where k is an integer.
Substituting k=0, 1, 2, 3, 4, 5 gives ind (z)=1,3,5,7,9,11 (mod 12]. Using

the table in reverse direction by finding these residues in the bottom row of the table

and reading off corresponding entries in the top row:

r=17,5116,8, 2 (mod 13)
Writing these in ascending order gives x =2, 5,6, 7, 8, 11 (mod 13). Of course, these

are the same solutions as we found in Example 19 but we used the primitive root 2
modulo 13 in that example.

You may have noticed that using a larger primitive root 7 rather than 2 involved
evaluating powers of 7 rather than powers of 2. It is simpler to use a lower base as
long as it is a primitive root of n.

We also need to find solutions to the non — linear Diophantine equation

72° =6+ 13y
Substituting the above z values 2, 5, 6, 7, 8 and 11 into this gives
448 —
Tx2' =448 =6+13y = y= ?3 6 =34

109 375 — 6
7x5 =109 375 =6+ 13y = y=——"7 =813
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326 592 — 6
7x6° =326592=06+13y = y:T:25122
S 5 764 801 — 6
Tx7°=823543=6+13y = y:T:63349
; 1 835008 — 6
7x8 =1835008 =6+13y = y:T:141154
. 12 400 927 — 6
Tx11° =12400927 =6 +13y = y= e =953 917

Our solutions are {x — 2y = 34}, {x =5y = 8413}, {a: — 6,y =25 122},

{xz?,y:63 349}, {x:8,y:141 154} and {a::ll,y:953 917}.

17. We are given that 2 is a primitive root of modulo 37. Solving z'* = 27 (mod 37) by
using index base 2 we have
ind, (#'") = ind, (27)(mod 36)
14 xind, (z) = ind, (27)(mod 36) (1)
We must find the index m in 2" = 27(m0d 37). Evaluating powers of 2:
2" =32= —5(m0d 37)
2" =2"x2=—5x2=-10=27(mod 37|
Therefore ind, (27) = 6 and substituting this into the above (J[) yields
14 ind, (x) = 6(m0d 36)
The gcd(14, 36) =2 and 2 ‘ 6 so we have 2 incongruent solutions. Simplifying this

congruence we have
7 ind, (z) = 3(mod 18) .
By inspection 7x3 =21 so ind, (z)=3,3+18 =3, 21(mod 36). Therefore
p=920, =g o (mod 37)
Evaluating 2 (mod 37) gives
2= (2) x2=(-5) x2=28 x2= (12 x2=144x2 =288 = 29(mod 37|

Hence our solutions are x =8, 29 (mod 37).

. . -1 . C
18. We are required to prove that ind ( p— 1) = pT where r is a primitive root of p.
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Proof.

We are given that ris a primitive root of a prime p therefore
rrt=1 (mod p).

p—1 p-1

=2y

We can write r

By Lemma (4.3):
=1 (modp) & =41 (modp)

2
p—1

Applying this Lemma to the above equation [7‘2 =1 (mod p) yields

p—1 p—1

r El(modp) or r E—l(mOdp).

p—1

We cannot have r 2 =1 (mod p). Why not?

Because ris a primitive root of p so the smallest index to give 1 modulo pis p —1.

Therefore we must have

E
r? =-1 (mod p) .
-1
Also note that —1=p—1 (mod p) so rewriting this r ? = —1 (mod p) as
E
r? Ep—l(modp).
. . . p—1
Hence by definition of index we have ind, ( p— 1) = -
This completes our proof.
[
We are required to prove that 2" =a (mod p) has a solution <

p—1

a? =1 (mod p) where g = gcd(m, D — 1).

How do we prove this result?

We use Proposition (6.17):
Let n have a primitive root and ged (a, n) = 1. The congruence
" =a (mod n)

has a solution <
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aO(n)/g =1 (mod n) where g = gcd(m, ¢(n>>

Proof.

Using this proposition with n = p gives us our result because

$(p)=p-1.
So 2" =a (mod p) has a solution < a¢<p)/‘q = a%l =1 (mod p) where

g= gcd(m, D — 1). This is our required result.

We are asked to prove that:
Let ged (r, n) =land r, 7, 1, -, Q(n) be integers relatively prime to n. If ris a
primitive root of n, then

r,ort, Tt 7“@(")
are congruent modulo n to r, n, 7, -, 7’< ) in some order.
Proof.
The given {7’1, Ty Ty o0 ro(n)} is a reduced residue system modulo n. We need to
show that the set {r, r?,ort, r'b(")} is also a reduced residue system. How?
Show two things;
1) {r, et 7"0(”)} is incongruent.

2) gcd(rj, n)zl for j=1, 2, 3, -, gb(n)
Step 1
We need to show that any two residues of the form 7’ where j =1, 2, ---, gb(n) are

incongruent modulo n.

Suppose any two residues of this form are congruent modulo n:
r =" (mod n)
By applying Proposition (6.6):
Let the integer a modulo n have order k. Then
o =a” (mod n) & j=m (mod k:)
We have j =m (mod qb(n)) because ris a primitive root so its order is ¢(n> We

have 7 =m because j, m=1, 2, 3, ---, ¢(n> This means that the set



21.

Complete Solutions 6.3 Page 24 of 26

oln ..
{r, r’,ort, e ( )} is incongruent modulo n.

Step 2
Since gcd(r, n)zl SO gcd(r‘i, n)zl for =1, 2, 3, ---, gb(n)

Hence the set {r, r*,ort, 7"0(")} satisfies both conditions for a reduced residue
system.

Therefore, the elements in this set {r, rt,ort, 7"0(")} (mod n) are congruent
{7’1, T, Ty ro(n)} (mod n) in some order.

This completes our proof.

We are asked to prove the following:

Let n have a primitive root and a and n be relatively prime. The congruence
" =a (mod n)

has a solution < a¢(")/g =1 (mod n) where g = ged (m, qb(n)) Additionally,

there are exactly g incongruent solutions.

Proof.

Let r be a primitive root of modulo n. Consider the given non — linear congruence

" =a (mod n) . Taking indices to the base 7 of this congruence
ind (z")=ind, (a) (mod ¢(n)).
Using the rules, we have
m ind, (z) = ind, (a) (mod ¢ (n)) *)
This (*) is now a linear congruence so applying Proposition (3.15):
The congruence az = b (mod n) has a solution < g‘ b where g = gcd(a, n)
We have m ind, (z) = ind, (a) (mod ¢ (n)] has a solution < ¢| ind (a) where
g= gcd(m, ¢(n)) By Proposition (3.16):
ar = b (mod n) has g incongruent solutions provided g‘ b where g = gcd(a, n)

We have g incongruent solutions of (*). Let ind (a) = m then by the definition of
index we have

r’" = a(mod n)
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Taking this congruence r" = a(mod n) to the power

ol (n)
(r)(,) i (mod n)

Since we are given that g = ged (m, qb(n)) so there is an integer k such that

gk =m

¢(n) ¢(n) ) k o)
(rm) ¢ = (rgk ro= e = el = (row) =1'"=1=a" (mod n)
By the rules
of indices
o0
Hence, we have our result a ¢ = 1(m0d n) This completes our proof.
[
(a) We are asked to show that
= —1(m0d p) has solutions < p=1 (mod 4) .
How do we prove this result?
We use Proposition (6.17):
Let n have a primitive root and a and n be relatively prime. The congruence
2" =a (mod n)
has a solution < a(‘bw/g =1 (mod n) where g = gcd(m, ¢(n))
Proof.
We are given that p is an odd prime. Let g = gecd (2, ¢( p)) then
g= gcd(Q, gb(p)) = ged (2, p— 1) = 2. By Proposition (6.17) we have
olr) =
= —1(mod p) has solutions < (—1) 9 = (—1) =1 (mod p).
From the last part we have
-1 _
(~1) El(mod p) & pTl:Qk & pol=4k o pEl(m0d4).
We have our result z* = —1(m0d p) has solutions < p=1 (mod 4) .
[

(b) Similar to part (a) but we need to consider two geds.

We need to show that z' = —1(m0d p) has solutions <& p=1 (mod 8) .
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Proof.
We are given that p is an odd prime. Let g = gcd(4, ¢(p)) then

g = ged (4, p— 1). By Proposition (6.17) we have
' = —1(m0d p) has solutions < (—1)(p71)/g =1 (mod p).

We are given that p is odd so p —1 is even therefore

g:gcd(4, p—l):2 or 4
Suppose g = ged (4, p— 1) =2 then p —1=2k where kis odd (if k£ was even then
L . : (r-fs _ :
g = 4). Substituting this p —1 =2k into the above (—1) =1 (mod p) yields

o =y =

Therefore ¢ =4 and we have

1 (mod p)

{IN

because k is odd

' = —l(mod p) has solutions < (—1)“071)/4 =1 (mod p)
From the last part we have
<—1)<?H)/4 =1 (mod p) & pT—l =2k & p—1=8k & p= 1(mod 8)

We have our result z' = —l(mod p) has solutions < p=1 (mod 8).



