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Complete Solutions to Exercise 3.1 
 

1. (a) Here is a sample of 3 sets of modulo 5: 

 0, 1, 2, 3, 4 ,  0, 1, 2, 3, 4     and  5, 6, 7, 8, 9 .  

(b) A sample of 3 sets modulo 10 is: 

   0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , 1, 2, 3, 4, 5, 6, 7, 8, 9, 10           and 

 10, 11, 12, 13, 14, 15, 16, 17, 18, 19   

(c) Similarly, we have 

   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 , 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13            

and  13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 .  

 

2. (a) From this set  1, 2, 3, 4, 5, 6, 7, 8, 9, 10  the stop 0 modulo 11 is missing. 

(b) In this set  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12  we have two integers congruent 

to each other:  11 0 mod 11 . Remember for a complete system of residues any 

two numbers cannot be congruent to each other. 

(c) From this set  0, 2, 4, 6, 8, 10, 12, 13, 14, 15, 16  clearly the first 6 numbers are 

not congruent to each other so they form part of the system. Let us check 12 and 
13 entries in this set: 

 12 1 mod 11   

 13 2 mod 11   

We already have the integer 2 in the given set. Again two integers, 2 and 13, in 
the given set are congruent to each other so the set cannot form a complete 
system of residues modulo 11. 
 

3. (a) The complete system of least non-negative residues modulo 6 is 

 0, 1, 2, 3, 4, 5   

(b) Similarly, for modulo 12 the complete system of the least non-negative 
residues is 

 0, 1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11   

(c) For modulo 17 we have the set 
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 0, 1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16   

 
4. (a) We need to find the remainder after dividing 100 by 12 because we are given 

 100 mod 12x . We have  100 8 12 4    so  

 100 4 mod 12   

Hence 4x  . 

(b) We have  666= 60 11 +6  so we have A remainder of 6: 

 666 6 mod 11  which gives 6x  .  

(c) What is 5  modulo 15 equal to? 
It is 10 modulo 15 because we count 5 stops from 15 in an anti-clockwise 
direction: 

 
We have  5 10 mod 15   so 10x  . 

(d) Clearly for  1000 mod 1001x  if we divide 1001 by 1000 we have the 

remainder of 1000 because  1000 0 1001 1000    so 1000x  . 

(e) We are given  25 mod 7x  .  As 21  is a multiple of 7 and 

25 21 4     so we have  

 25 4 3 mod 7         

Hence 3x  . 

(f) How do we find the least non-negative residue in the case  100 mod 24x  ? 

 100 4 24 4       

This remainder 4  is not the least non-negative residue (remainder). What is 
4  modulo 24 equal to? 

Well 24 4 20   so we have 

 100 4 20 mod 24     
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Hence 20x  . 
 

5. In each case we use Proposition (3.6): 

If  moda b n  and   modc d n   then  

(i)  moda c b d n     (ii)   modac bd n   

 

(a) We are given  2789 2788 mod 2787x   but we don’t need to add these 

numbers. We have 

 2789 2 mod 2787  and  2788 1 mod 2787 .  

Using part (i) of the above proposition gives 

 2789 2788 2 1 3 mod 2787x        

(b) Using part (ii) of the above proposition gives 

 2789 2788 2 1 2 mod 2787x        

(c) Similarly for  5201 5211 mod 5200x   we have 

 5201 1 mod 5200  and  5211 11 mod 5200   

 Again using (3.6) part (i) we have 

 5201 5211 1 11 12 mod 5200x        

(d) Applying part (ii) for  5201 5211 mod 5200x   yields 

 5201 5211 1 11 11 mod 5200x        

(e) We need to evaluate  5198 5188 mod 5200x  . Note that 5198 is 2 less 

than 5200 and 5188 is 12 less than 5200 therefore we have 

 5198 2 mod 5200  and  5188 12 mod 5200   

Applying Proposition (3.6) part (i) to these congruences we have 

 
 

5198 5188
2 12
14 5186 mod 5200

x  
   
  

  

(f) We need to find the least non-negative residue x modulo 5200 of: 

 5198 5180 mod 5200x    

We have  5180 20 mod 5200 . Using Proposition (3.6) part (ii) on  
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 5198 2 mod 5200  and  5180 20 mod 5200 .  

Gives 

 
 

5198 5180
2 20

40 mod 5200

x  
  


     

 
6. We just need to find the remainder of dividing 1729  by 5, 11 and 1001: 

 
 
 

1729 4 mod 5

1729 2 mod 11

1729 728 mod 1001






  

 
7. Since we are interested in the last two digits so we work with modulo 100. We 

find the least non-negative residue module 100 of each integer and then do the 
calculation. 
(a)  Evaluating the least non-negative residues: 

 4 352 709 9 mod 100  and  4 678 829 29 mod 100   

Carrying out the multiplication 

 
4 352 709 4 678 829 9 29

261 61 mod 100
  

    

Hence the last two digits are 61. 
(b) First, we find the least non-negative residue 4352 783  modulo 100: 

 4 352 783 83 17 mod 100    

Also finding a power of 17  which makes the arithmetic easier: 

   2
17 289 89 11 mod 100             (*) 

Therefore 

 
   
   

  

 
   

55

4

22

2

By (*)

4 352 783 17

17 17

17 17

11 17

121 17
21 17 357 57 43 mod 100

 

   
       
      

  
       
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The last two digits of 54 352 783  are 43. 

 

8. (a) The congruence  12 232 mod 5  is true because when we divide 232 and 12 

by 5 we end up with the same remainder 2.  

(b) This result  15 5 mod 10  is false because 15 and 5 divided by 10 give the 

same remainder, so  15 5 mod 10 . 

(c) This  12 1 mod 11  is also false because dividing 12 by 11 gives remainder 

+1 not 1 , that is  12 1 mod 11 . 

(d) We are given  365 1 mod 7 . Dividing 365 by 7 gives remainder 1 so  

 365 1 mod 7   

Hence our given result is false. 

(e) The given congruence  65 29 mod12   in this case is bit more complex 

than the above. It is not easy to spot whether this result is true or false. We have 

 65 5 mod12   and  29 5 mod12  .  

Therefore  65 29 mod12   so the result is true. 

(f) We are given  43 46 mod 2   . Now 43  divided by 2 gives remainder 

1   and 46  divided by 2 gives remainder 0. Therefore they are incongruent, so 

 43 46 mod 2    is true. 

 
9. How can we find the last digit of any number? 

By using modulo 10 and finding the least non-negative residue modulo 10. 
(a) We are given 1003 . First we try to find an index of 3 which makes our 
arithmetic much easier. Well 23 9  so 

 23 9 1 mod 10    

Next we break the index 100 into a multiple of 2 and any remainder: 

100 2 50    
Using this we have 

 
   

100 2 50

502

50

3 3

3 Using rules of indices

1 1 mod 10


    

  
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The last digit of 1003  is 1. 
(b) How do we find the last digit of 1009 ? 

Since 23 9   we can use the result of part (a): 

 
   

100100 2

2100 2

9 3

3 1 1 mod 10



  
  

The last digit of 1009  is 1. 
(c) We are given 1002  and we look for an index of 2 which will make the arithmetic 

easier. Well  52 32 2 mod 10  . 

Next we break the index 100 into a multiple of 5: 

5 20 100    
This is still going to be pretty tedious because we don’t have 1  which always 
makes the arithmetic a lot easier because index of these numbers are easy to 
evaluate. However we cannot change the question so let us try to slog this out. 

We make repeated use of the above result  52 2 mod 10 : 

 

   

100 5 20

205

20

45 4 5 4

2 2

2
2

2 2 2 16 6 mod 10










    

  

The remainder is 6 so the last digit of 1002  is 6. 
(d) How do we find the last digit of 1004 ? 

Since 24 2 , we use the result of part (c). We have 

 
     

100100 2

2100 2

Using the rules of indices By part (c)

4 2

2 6 36 6 mod 10



   
  

The last digit of 1004  is 6. 
 

10. How can we find the last two digits of any number? 
By finding the least non-negative residue module 100. We are informed that the 
number 20142014  has 6655 digits but we are not interested in finding all these 
digits but just the last two. How do we find these? 
Let us first obtain the least non-negative residue of 2014 modulo 100: 

 2014 14 mod 100   
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Now 214 196  and  196 96 4 mod 100  . We would rather deal with 4  

than 14. We have 

 
   

2014 2014

10072

1007

2014 14

14

4 mod 100





 

 

The index 1007 is too large to evaluate by calculator. We can write  

 1007 1007 1007 10074 1 4 1 4      

Therefore we have  

 
     
10072014

1007

2014 4
1 4 mod 100 *

 
 

  

Let us examine the last term on the right-hand side, 10074 . We need to rewrite 
1007 in terms of a simpler index. We have  

 114 4 194 304 4 mod 100   (**) 

We need to express the index 1007 as a multiple of 11 and any remainder: 

 1007 91 11 6     (�) 

Using result (�) to find 10074  we have 
 

 
  
  

 
  

 

11 91 61007

9111 6

91 6

By (**)
11 8 3 6

811 3 6

8 3 6

By (**)
11 6 6 7

4 4

4 4 Using the rules of indices

4 4

4 4

4 4 4

4 4 4

4 4 4 4 4 16384 84 16 mod 100

 

 


     

 

 

  

  

       

 

Putting this result  10074 16 mod 100  into (*) gives 

 
   

2014 10072014 1 4

1 16 16 mod 100

 
    

  

Hence the last two digits of 20142014  are 16. 
 

11. (a) Proof. 
An even number is congruent to 0 modulo 2. 
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Let 2a m  then  

   2 2 0 0 mod 2
nn n n na m m m      

We have  0 mod 2na   therefore na  is even. 

■ 
(b) Proof. 
An odd number a is congruent to 1 modulo 2, that is 

 1 mod 2a   

Therefore by Proposition (3.8): 

If  moda b n   then  modk ka b n  where k is a natural number. 

We have 

 1 1 mod 2n na    

Since  1 mod 2na   so na  is odd. 

■ 
 

12. (a) We need to prove that a square number 2a  divided by 3 gives only 
remainders 0 or 1. 
Proof. 
Let a be any integer then we can write a in modulo 3 as 

 0, 1 or  2 mod 3a    

Note that  2 1 mod 3a   . Squaring a gives 

 
 

22 2 20 , 1 or  1
0 or  1 mod 3

a  


  

This completes our proof that a square number divided by 3 can only have 
remainders 0 or 1. 

■ 
(b) Repeating a similar argument for modulo 4. 
Proof. 
Let a be any integer then we can write a in modulo 4 as 

 
 

0, 1, 2 or  3 mod 4

0, 1, 2 or  1 mod 4

a 

 
  

Squaring a gives 
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 
 

22 2 2 20 , 1 , 2 or  1
0, 1, 0 or  1 mod 4

a  


  

This completes our proof. 
 

13. We need to prove that  3 mod 4p   cannot be written as the sum of two 

squares. 
Proof. 

Let 2 2p a b  . 
Using the result of question 12(b) and evaluating the least non-negative residue 
modulo 4 for each of these square numbers gives 

 
 

2

2

0, 1 mod 4

0, 1 mod 4

a

b




  

Adding them together yields 

 

2 2 0 0, 0 1, 1 0 or 1+1
0, 1, 1 or 2
0, 1, 2 mod 4

p a b     



 

Therefore  3 mod 4p   cannot be written as the sum of two squares. 

■ 
14. We need to prove that  6 6 mod 10n  . How? 

Use mathematical induction which involves the following three steps: 
Step 1: Check the result for a base case 0k . 

Step 2: Assume the result is true for k m . 
Step 3: Prove the result for 1k m  . 
Proof. 
Step 1: Clearly the result is true for the base case 1n   because 

 6 6 mod 10   

Step 2: Assume the result is true for k m : 

 6 6 mod 10m   (*) 

Step 3: We are required to prove  16 6 mod 10m  . Expanding the left - hand 

side 
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  
1

By (*)

6 6 6
6 6 36 6 mod 10

m m  
      

By mathematical induction we have our result  6 6 mod 10n  . 

■ 
The last digit of 6 to any natural number index will be 6. 
 

15. We need to show that  2 0 mod 10m  . 

Proof. 
Evaluating the first few powers of 2 and finding the least non-negative residues 
modulo 10: 

       2 3 42 2 mod 10 , 2 4 mod 10 , 2 8 mod 10 , 2 6 mod 10      

Let m be any natural number. Then by using the Division Algorithm (1.7) of 
Chapter 1: 

There exist unique integers q and r such that 
a nq r     where 0 r n  .  

We can write the index m as a multiple of 4 and a remainder: 
4m k r   where 0 4r  .  

Substituting this 4m k r   into the index of 2 gives 

 
 

    

4

4

By question 14

2 2

2 2

6 2
6 2 mod 10 �

m k r

k r

k r

r



 

 
 

 

Remember the remainder r satisfies 0 4r   so can only have values of r equal 
to: 

0, 1, 2 or 3       
Substituting each of these values into  �  yields 

 
 

0 1 2 3

2 6 2
6 2 , 6 2 , 6 2 or 6 2
6, 12, 24 or 48
6, 2, 4 or 8 mod 10

2, 4, 6 or 8 mod 10

m r 
    




  

Hence  2 0 mod 10m  .  
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■ 
The last digit of powers of 2 cannot be zero. 

 
16. We need to prove that the last digit of a square can only be 0, 1, 4, 5, 6 and 9. 

Proof. 
Let n be any integer. By using the Division Algorithm we can write this as a 
multiple of 10 plus any remainder: 

10n q r   where 0 10r  .  
 Squaring this 10n q r   and using modulo 10 gives 

 

 
 

22

2 2

0 mod 10

2

10
100 20

mod 10

n q r
q qr r

r


 
  



   

Substituting the possible values of the remainder 0, 1, 2, , 8, 9r    into the 

above: 

 

2 2

2 2 2 2 2 2 2 2 2 20 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8   and  9
0, 1, 4, 9, 16, 25, 36, 49, 64  and  81
0, 1, 4, 9, 6, 5, 6, 9, 4  and  1 mod 10

n r




  

Hence  2 0, 1, 4, 5, 6, 9 mod 10n  , therefore the last digit of a square 

number can only be 0, 1, 4, 5, 6 and 9. 
■ 

17. We need to prove that the last digit of a cube can be any digit. 
Proof. 
The proof in this case is very similar to the proof of the previous question. The 
only difference is we examine  

 

3 3

3 3 3 3 3 3 3 3 3 30 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8   and  9
0, 1, 8, 7, 4, 5, 6, 3, 2  and  9 mod 10

n r



  

Hence the last digit of a cube can be any integer from 0 to 9. 
■ 

 
18. How do we prove something is not true? 

By giving a counter example. You can come up with many counter examples but 
you only need one to disprove a statement. 
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(a) We need to show that    2 2 mod moda b n a b n    is not true.  

Consider the following: 

   2 22 3 4 mod 5 2 3 mod 5     

(b) We need to find a counter example to  

     0 mod 0 mod   or  0 moda b n a n b n      

Consider  

     2 3 0 mod 6 2 0 mod 6   or  3 0 mod 6      

(c) In this case the counter example is 

   2 6 2 1 mod 10 but 6 1 mod 10     

 
19. (a) We are required to find the remainder when 56711  is divided by 61. 

We first examine a lower power of 11: 

 211 121 1 mod 61   (*) 

Now we write the index 567 as a multiple of 2 plus remainder. Why? 
So that we can use result (*): 

 567 283 2 1     

Applying the rules of indices and using this  567 283 2 1    to evaluate 56711 : 
 

 
 

 

283 2 1567

2832

283

By (*)

11 11

11 11

1 11

11 50 mod61

 

 

  

  

  

The remainder is 50 after 56711  is divided by 61. 
(b) Similarly we evaluate small powers of 11 to reduce our arithmetic. 

 211 121 35 mod 43    

Dealing with 35 will be time consuming. Let us try other powers of 11: 

 311 1331 41 2 mod 43    (**) 

Easier to deal with 2  than 35. In order to use this result (**) we need to write 
the index 567 as a multiple of 3 plus any remainder: 

567 189 3    

Therefore  
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     189 189567 3 189 311 11 11 2 mod 43     (�) 

The index 189 is too large to deal with. Evaluating powers of 2: 

       
   

2 3 4 5

6 7

2 4 mod 43 , 2 8 mod 43 , 2 16 mod 43 , 2 32 mod 43 ,

2 21 mod 43 , 2 128 1 mod 43

   

  
  

We want to use  72 1 mod 43   because 1  to any index gives 1 or 1 . 

Using this in (�) yields 

 
 
   

     

189567

189 189

277

27

11 2

1 2

1 2

1 1 1 1 1 mod 43

 

  

  

        

  

The remainder of dividing 56711  by 43 is 1. 
 

20. What does this 
522 1  mean? 

 55 22 322 1 2 1 2 1      
For the time being forget about the plus 1. We will add this in at the end. 
Evaluating some powers of 2 which are close to 641: 

8 9 102 256, 2 512, 2 1024     
92 512 will give us the smallest number if we count in an anti-clockwise 

direction: 

 92 512 129 mod 641    

Writing the index 32 as a multiple of 9 plus remainder we have 

 32 3 9 5     

We have 
 

 
 

 

5 3 9 52 32

39 5

3

2 2 2

2 2

129 32
2 146 689 32
621 32
20 32 640 1 mod641

  

 

  
  
  
     

  

Therefore  

 522 1 1 1 0 mod641      
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Hence 641 divides 
522 1 . [100 years after Fermat stipulated that 22 1

n
  were 

primes numbers, Euler found this factor, 641, of 
522 1 . For a more detailed 

account of this see1]. 
 

21. How do we find the last digit of 1! 2! 3! 4! 1000!     ? 

You will recall that    ! 1 2 3 2 1n n n n         . From 5! onwards we 

will have a multiple of 10 because each term will have a 5 and a 2 which are 
multiplied: 

 
 

 

 

5! 1 2 3 4 5 0 mod 10

6! 1 2 3 4 5 6 0 mod 10

7! 1 2 3 4 5 6 7 0 mod 10

1000! 1 2 3 4 5 6 999 1000 0 mod 10

     

      

       

         
  



  

Since all these terms are congruent to 0 modulo 10 we can ignore them in the 
given addition  1! 2! 3! 4! 1000!      We only need to add the first 4 terms: 

 1! 2! 3! 4! 1 2 6 24 33 3 mod 10           

The last digit of 1! 2! 3! 4! 1000!      is 3. 
 

22. Since we are interested in finding the last digit so we work with modulo 10. 
(a) We are given 19611961 . Finding the least non-negative residue modulo 10: 

 1961 19611961 1 1 mod 10    

 The last digit of 19611961  is 1. (Seems obvious because the last digit is 1). 
(b) We examine the number 10221023 . First we find the least non-negative residue 
of the number 1023 modulo 10: 

 1023 3 mod 10   

Also 

 2 21023 3 9 1 mod 10         

It makes the arithmetic a lot easier if we use 21023  because we have 1  and it is 
straightforward to find 1  to any integer index. We have 

 
1 Number Theory A Historical Approach by John Watkins pages 137-39. 
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 
     

5111022 2

511

1023 1023

1 1 9 mod 10



    
  

The last digit of 10221023  is 9. 
(c) We are given 20192019 . Note that 

 2019 1 mod 10   

Therefore    201920192019 1 1 9 mod 10     . Hence the last digit of 20192019  

is 9. 
 

23. We are asked to prove that at least one of  k  consecutive integers is divisible by 
k. 
Proof. 

 If we only have one integer then clearly the result holds. Assume 2k  . 
Let  , 1, 2, , 1n n n n k     be k consecutive integers. We work with 

modulo k  and show that one of these is congruent to  0 mod k . 

If k n  then we are done. Let us consider the case where k n  then by the  

division algorithm there are integers q and r such that  
0n kq r r k       (*) 

Writing this out in modular arithmetic 

     , 1 1, 2 2, , 1 1 modn r n r n r n k r k k             

By (*) the largest value of r is 1k   and as these integers are consecutive 
therefore they go through 

       0 , 1, 2, , 1 1 1 2 2 modr r r r k k k k k            

Since 2k   these consecutive residues modulo k lie between 0 and 2 2k : 
, 1, , 2 21, 2, 3, , 1, k kk k      

Hence one of these, r j  say, is congruent to k, that is 

 0 modr j k k    

Therefore one of the integers  , 1, 2, , 1n n n n k     is divisible by k. 

This completes our proof. 
■ 

 

24. (a) We are required to prove m n  and  moda b n  then  moda b m . 
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Proof. 

We are given that  moda b n  which implies that there is an integer k which 

satisfies: 
a b kn   [a b  is multiple of n] 

We are also given m n  so there is an integer x such that mx n . 

Substituting this into the above result gives 

 a b kn kmx m kx      

Hence a b  is a multiple of m therefore we have  moda b m . 

■ 

(b) We are asked to prove if  modka kb kn  then  moda b n . 

Proof. 
From the definition of congruence we have 

 modka kb kn ka kb mkn     

We are given that 0k  so dividing ka kb mkn   by k gives 

 moda b mn a b n     

This completes our proof. 
■ 

(c) We are asked to prove if  moda b n  and  moda b m  then 

 moda b m n   provided  gcd , 1m n  . 

Proof. 

From  moda b n  and  moda b m  we have  

 n a b  and  m a b . 

Using the result of question 12(i) Exercises 1.3: 

If a c and b c , and  gcd , 1a b   then  a b c . 

Applying this to  n a b  and  m a b  gives 

   n m a b   

Because    n m a b   so we have our result  moda b m n  . 

 ■ 
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(d) We have to prove if  mod ka b n  for 1, 2, 3, ,k r   where 

 gcd , 1i jn n   then  1 2mod ra b n n n    . 

Proof. 
We prove this by induction on r. 

By part (c) the result holds for 2r  , that is  1 2moda b n n  . 

Assume the result is true for r m ; 

 1 2mod ma b n n n     (*) 

Required to prove the result for 1r m  ; 

 1 2 1mod m ma b n n n n       

We are given that  1mod ma b n   and also  gcd , 1i jn n   where i j  

which implies  

     1 1 1 2 1gcd , gcd , gcd , 1m m m mn n n n n n       

By the result of question 15(ii) of Exercises 1.3: 

       1 2 1 2gcd , gcd , gcd , 1 gcd , 1k ka n a n a n a n n n           

Therefore,  1 2 1gcd , 1m mn n n n     . Hence by (*) and  1mod ma b n 

we obtain  

 1 2 1mod m ma b n n n n           

This completes our proof. 
■ 

(e) We are required to prove that if 1 2
1 2

mk k k
mn p p p     and 

 moda b n  then  mod ja b p . 

Proof. 

We are given that  moda b n  which implies  n a b .  

We are also given 1 2
1 2

mk k k
mn p p p     so  

jp n  for 1, 2, ,j m    

Hence we have jp n  and  n a b  so  jp a b  for 1, 2, ,j m  . By 

the definition of congruence we have  mod ja b p  for 1, 2, ,j m  . 

■ 
 

25. We are asked to prove  3 0 mod 3a a  . 
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Proof. 
A complete residue system modulo 3 is the residues 0, 1 and 2. Substituting each 
of these 0, 1 and 2 into 3a a   gives 

 30 0 0 0 mod 3     

 31 1 0 0 mod 3    

 32 2 6 0 mod 3    

Since for every residue 0, 1 and 2 in the complete residue system we have 

 3 0 mod 3a a   so this completes our proof. 

■ 
 

26. We are required to prove 3 divides 4 1n  . How? 
Use mathematical induction with modulo 3. 
The three steps of mathematical induction are: 
Step 1: Check the result for a base case 0n . 

Step 2: Assume the result is true for n k . 
Step 3: Prove the result for 1n k  . 
Proof. 
Step 1:  
Clearly the result is true for 1n   because 14 1 3   and  

 3 0 mod 3   

Step 2: 
Assume the result is true for n k :  

 4 1 0 mod 3k     (*) 

Step 3: 

We need to prove that  14 1 0 mod 3k   . Examining the left - hand side of 

this: 

 
 

 
   

1

By (*)Because 3 4
is a multiple of 3

4 1 4 4 1

3 4 4 1 Writing 4 3 where 4

0 0 0 mod 3
k

k k

k k kx x x x

   
        

  
 

We have shown  14 1 0 mod 3k    therefore by mathematical induction we 

have 3 divides 4 1n  . 
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■ 
 

27. We need to show that a natural number N is divisible by 3   the sum of its 
digits is divisible by 3. 
The proof is more or less identical to Example 8. 
Proof. 

  . Let the integer be 1 2 2 1 0n n nN a a a a a a   . The sum S of the digits is given 

by  

1 2 2 1 0n n nS a a a a a a          (*) 

We are given that 3 divides into S, that is 3 S    

 0 mod 3S   (�) 

How do we show that this results in 3 divides into the given integer N? 

We first write out the integer N and then show that  0 mod 3N  . What does 

1 2 2 1 0n n nN a a a a a a    mean? 

We can write this in expanded form as: 

           
1 2 2 1 0

1 2 2
1 2 2 1 010 10 10 10 10 1

n n n
n n n

n n n

N a a a a a a
a a a a a a

 
 

 


            




  

Since we are interested in divisibility by 3 so we use modulo 3. What is 10 
modulo 3 congruent to? 

 10 1 mod 3        

By applying Proposition (3.8)  moda b n   implies  modk ka b n  we have 

 10 1 1 mod 3k k  .  

Using these in the congruence below: 

           
         

    

1 2 2 1 0
1 2

1 2 1 0

1 2 1 0

1 2 2 1 0

By (*)

10 10 10 10 1 mod 3
1 1 1 1 1 By above results

0 mod 3 By  �

n n n
n n

n n

n n

n n n

N a a a a a a
a a a a a
a a a a a

a a a a a a
S

 






 


          

              
      

     







  

Hence 3 N . 

  . Since in the above we have  mod 3N S  so if 3N  then 3S . 

■ 
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28. (i) How to show  7 mod 7x x ? 

By substituting each of the integers which make up the complete residue system 
modulo 7. 
Proof. 

Evaluating  7 mod 7x  for each 0, 1, 2, 3, 4, 5  and 6x   and then finding the 

least non-negative residue modulo 7: 

 70 0 mod 7  

 71 1 mod 7  

 72 128 2 mod 7   

 73 2187 3 mod 7   

   774 3 2187 3 4 mod 7        

   775 2 128 2 5 mod 7      

   776 1 1 6 mod 7     

Since for the complete residue system  0, 1, 2, 3, 4, 5, 6  we have  

 7 mod 7x x  

So  7 mod 7x x . 

■ 

(ii) We need to show  7 mod 6x x . 

Proof. 

Similarly to part (i) we have for the complete residue system  0, 1, 2, 3, 4, 5  

 70 0 mod 6  

 71 1 mod 6  

 72 128 2 mod 6   

 73 2187 3 mod 6   

   774 3 2187 4 mod 6      

   775 1 1 5 mod 6     

Therefore  7 mod 6x x . 

■ 
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(iii) We need to show  7 mod 42x x . How? 

We use the results of part (i) and (ii).  
Proof. 
From parts (i) and (ii) we have 

 7 mod 7x x  and  7 mod 6x x  

Now using the result of question 24 part (c): 

If  moda b n  and  moda b m  then  moda b m n   provided 

 gcd , 1m n  . 

Checking that  gcd 7, 6 1  and so applying this to  7 mod 7x x  and 

 7 mod 6x x  gives  

   7 mod 6 7 mod 42x x x    

This completes our proof. 
■ 

 

29. We are required to prove  2 1 22 9 3 2 mod 54n n n     by using induction.  

Proof. 
Check the base case 1n  : 

   
     

2 1 1

2

2 8 mod 54

9 1 3 1 2 8 mod 54

  

   
  

Therefore, the result is true for 1n  . 
Assume the result holds for n k : 

 2 1 22 9 3 2 mod 54k k k     (�) 

We need to prove the result for 1n k  : 
       22 1 12 9 1 3 1 2 mod 54k k k        (*) 

How do we prove this? 
Expanding the right-hand side of (*) gives 
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   

 
 

 
     

2 1

2 2

2

2 2

2   by �
2 1 2

2 1

9 1 3 1 2 9 18 9 3 3 2
9 15 8
4 9 3 2 27 27

4 2 27 27

4 2 27 1 mod 54

k

k

k

k k k k k
k k

k k k k

k k

k k






         
  
    

  
  


  

Note that  

   1 2 Because 1  is evenk k m k k        

Substituting this  1 2k k m   into the above calculation gives 

       
   
 
   

2 2 1

2 1

2 1

2 1

9 1 3 1 2 4 2 27 1
4 2 27 2
4 2 54

4 2 mod 54

k

k

k

k

k k k k
m

m









      
 
 


  

Using the rules of indices on the final line gives 

       2 1 12 1 2 2 1 2 2 14 2 2 2 2 2 mod 54kk k k          

We have proven the result for 1n k  : 

       2 2 1 19 1 3 1 2 2 mod 54kk k        

By mathematical induction we conclude that   2 1 22 9 3 2 mod 54n n n    . 

 

30. We need to find the last two digits of 
999 . This means we need to work with 

modulo 100. Evaluating the first few powers of 9: 

     2 3 109 81 mod 100 , 9 729 29 mod 100 , , 9 3 486 784 401 1 mod 100       

We want to use the last result  

 109 1 mod 100   (*) 

because 1 to any index gives 1. This makes our arithmetic a lot easier. 

We want to write the highlight index in 
999  in multiples of 10 plus remainder. 

 99 387 420 489 38 742 048 10 9    .  

Writing 
999  by using this result we have 



Complete Solutions 3.1       Page 23 of 24 
 

 

 
   

99 387420489

38742048 10 9

3874204810 9

38742048 9 9

By (*) From above calculation

9 9

9

9 9

1 9 9 387 420 489 89 mod 100

 




 

    
 

  

Hence the last two digits of 
999  is 89. 

 

31. To show that if  moda b n  then      modP a P b n  we use the following 

propositions: 

Proposition (3.6). If  moda b n  and  modc d n   then  

(i)  moda c b d n     (ii)   modac bd n   

 

Proposition (3.8).  

If  moda b n   then  modk ka b n  where k is a natural number. 

Proof. 
Writing out  P a  and  P b  we have 

  2 1
0 1 2 1

m m
m mP a c c a c a c a c a
        

  2 1
0 1 2 1

m m
m mP b c c b c b c b c b
        

All the coefficients are congruent to each other 

     0 0 1 1mod , mod , , modm mc c n c c n c c n     

We are given that  moda b n  so by the above Proposition (3.8) we have 

     2 2 3 3mod , mod , , modm ma b n a b n a b n     

By Proposition (3.6) we have  

 2 1 2 1
0 1 2 1 0 1 2 1 modm m m m

m m m mc c a c a c a c a c c b c b c b c b n 
               

Therefore      modP a P b n  which is our required result. 

■ 
32. The given result is an easy test for divisibility by 11. 

Proof. 
Let the integer be 1 2 2 1 0n n nN a a a a a a    and T be given by: 

 0 1 2 3 1
n

nT a a a a a         (*) 
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We can write N in expanded form as: 

           
1 2 2 1 0

1 2 2
1 2 2 1 010 10 10 10 10 1

n n n
n n n

n n n

N a a a a a a
a a a a a a

 
 

 


            




  

Since we are interested in divisibility by 11 so we use modulo 11. What is 10 
modulo 11 equal to? 

 10 1 mod 11        

By applying Proposition (3.8)  moda b n   implies   modk ka b n  we have 

   10 1 mod 11
kk     

Using these in the congruence below: 

           
          

   
   

1 2 2 1 0
1 2

1 2 1 0
1 2

1 2 1 0

1

1 2 1 0

10 10 10 10 1 mod 11

1 1 1 1 1 By above results

1 1
mod 11 By  �

n n n
n n

n n
n n

n n

n n

n n

N a a a a a a
a a a a a

a a a a a

a a a a a
T

 












          
                                        

       
    








  

Both N and T are divisible by 11 or neither is. 
■ 

 


