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Complete Solutions to Exercise 7.2 
 

1. In each case we the properties of Proposition (7.9): 

(a) If  moda b p  then a b
p p
              

. 

(b) 
2

1a
p

      
.  

(c) a b a b
p p p
                           

.  

 

(a) We need to establish that the square root of  35 mod 31  exists. We have 

 35 4 mod 31 .  

By Proposition (7.9) part (a): 

We have 35 4
31 31
              

. Note that 24 2  so using part (b) of (7.9): 

235 4 2 1
31 31 31

                          
. 

Since the Legendre symbol 35 1
31
      

 so 35 is a quadratic residue of 31. 

(b) Similarly, for the integer 71 we have 

 71 9 mod 31 . 

Therefore, by part (a) of (7.9) we have 71 9
31 31
              

. Again 29 3  so by part (b) 

of (7.9): 
271 9 3 1

31 31 31

                          
.  

The Legendre symbol 71 1
31
      

 therefore 71 is a quadratic residue of 31. 

(c) Arguing along the same lines we have 

 56 25 mod 31 . 

Evaluating the Legendre symbol gives 
256 25 5 1

31 31 31

                          
.  
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Hence 56 is a quadratic residue of 31. 

(d) We have  94 1 mod 31 . Applying the above Proposition (7.9) to show that 

94 is a quadratic residue of 31: 
294 1 1 1

31 31 31

                          
.  

Hence 94 is a quadratic residue of 31. 

(e) We have  47 16 mod 31 . Therefore 
247 16 4 1

31 31 31

                          
. 

Since the Legendre symbol 47 1
31
      

 so 47 is a quadratic residue.  

 

2. (a) We need to test whether the square root of  46 mod 47  exists. Note that 

 46 1 mod 47 ; so we test whether 1  is a quadratic residue of 47. Also our 

prime 47 satisfies  47 3 mod 4  so by Proposition (7.11): 

 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
  

we have 

46 1 1
47 47
                

  because  47 3 mod 4 .  

Since the Legendre symbol 46 1
47
       

 so 46 is a quadratic non – residue of 47. 

(b) We have  95 1 mod 47  therefore 

95 1
47 47
              

 . 

By Proposition (7.10): 

1 1
p
      

  

So 95 1 1
47 47
               

 which means that 95 is a quadratic residue of 47. 

(c) We have  90 43 4 mod 47  . We can write 4  as 24 1 2    . Applying 

the properties of the Legendre symbol we have 
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2 290 4 1 2 1 2
47 47 47 47 47

                                              
 (�) 

Since  47 3 mod 4  so 1 1
47

        
 and by applying (7.9) part (b): 

2

1a
p

      
  

we have 
22 1

47

      
. Substituting 1 1

47
        

 and 
22 1

47

      
 into (�) gives 

290 1 2 1 1 1
47 47 47

                              
.  

Since the Legendre symbol 90 1
47
       

 so 90 is a quadratic non – residue of 47. 

(d) We need to find whether the square root of  58 mod 47  exists. Well 

 58 11 mod 47 .  

We could use Euler’s criterion but that would mean we need to evaluate  

 
47 1

23211 11 ? mod 47


  .  

Is there an easier to find whether 58 is a quadratic residue of 47? 

Yes, because  58 11 36 mod 47   and  
236 1 6   .  

Therefore, we have 

 
2 258 36 1 6 1 6 1 1 1

47 47 47 47 47

                                                   
.  

Hence 58 is a quadratic non – residue of modulo 47. 
(e) We need to find whether 90 58  is a quadratic residue of 47. By the solutions 
to parts (c) and (d) we have 

   
by part (c) by part (d)

90 58 90 58 1 1 1
47 47 47

                                 
  

Hence 90 58  is a quadratic residue of modulo 47. Note that 90 and 58 are 
quadratic non – residues but 90 58  is a quadratic residue of 47. 
 

3. (a) Clearly 5 is a factor of 218 1 325  . We have 325 65 5 13
5

    so 

2325 5 5 13 5 13       
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(b) Factorizing this integer 230 1 901   is more challenging. Since it is a 

quadratic of the form 2 1x   so the (odd) primes p must satisfy  1 mod 4p  . 

Clearly 5 is not a factor of 901 but what about 13? 
901 69.31
13

 . 

Therefore 13 is not prime factor of 901. Let’s trial 17: 
901 53
17

 . 

Hence 17 is a factor of 901 and 53 is prime so 
901 17 53  . 

(c) Clearly 10 2 5   is a factor of 253 1 2810  . We have  
2810 2 5 281   .  

We need to find the factors of 281. The simplest way to find the prime factors p of 
281 is to first check that 281 is prime or composite. You can show by Corollary 
(2.10) that 281 is prime. 
Hence 2810 2 5 281   . 
(d) We are asked to factorize 260 1 3601  . Since this is an integer which 

conforms to 2 1x   so it must have prime factors p such that  1 mod 4p  .  

No point trying 5. So, we trial 13: 
3601 277
13

 .  

Now 277 is either composite or prime. By Corollary (2.10) we only need to 

examine the odd primes below 277 16    
. So, we examine prime p which satisfy 

 1 mod 4p   and below 16. We only need to try 13 again: 

 277 21.31 2 dp
13

 . 

Since 13 is not a factor of 277 so 277 is prime. Therefore 
3601 13 277  .  

(e) We need to factorize 224 1 577  . Since 224 1 577 24          
 so we only 

need to examine the odd primes p of the form  1 mod 4p   below 24.  

We know 5 is not a factor of 577. Only need to try 13 and 17: 

,
577 57744.38 33.94
13 17

  .  

Since 13 and 17 are not factors of 577 so 577 is prime.  
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(f) We need to factorize 2104 1 10 817  . The primes p must satisfy 

 1 mod 4p  . Clearly 5 is not a factor of this 10 817. The next few primes of the 

format  1 mod 4p   are 13, 17, 29 and if we divide 10 817 by each of these we 

find that 
10 817

373
29

 . Therefore 29 is a factor and  

10817 29 373  . 

Need to test the primality of 373. Using Corollary (2.10) we find that  

373 19.31.. 19         
.  

Clearly 373 is prime because we have tried primes larger than 19 and they did not 
go into 10 817 so cannot be factors of 373. Hence 10817 29 373  . 

(g) We are asked to factorize 2302 1 91 205  . Clearly 5 is factor: 

91 205
18 241

5
 . 

The prime factor p of 18 241 must be of the form  1 mod 4p  . Trialling 13 and 

17 we find that  
18 241 18 241

1403.154..., 1073
13 17

   

So, 17 is a factor of 18 241 and 91 205. Testing 1073 for primality gives 

1073 32    
. 

Testing whether 17 and 29 are factors of 1073 we have 
1073 107363.118..., 37
17 29

  .  

Therefore 1073 29 37   which implies 18 241 17 1073 17 29 37     . Hence 
2302 1 91 205=5 17 29 37     . 

(h) We need to factorize 21014 1 1028 197  . As before we only need to examine 

primes p of the form  1 mod 4p  . We trail 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 

97, 101, 109, … and we find that  
1028 197

9433
109

 . 

Evaluating 9433 97    
 and since the first prime into 1 028 197 was 109 so none 

of the earlier primes can go into 9433 because if they did then they would be 
factors of 1 028 197. Hence 9433 is prime and we have  
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21014 +1=1028 197 109 9433  . 

 
4. Proof. 

Using the Legendre symbol we have 

Let  modnx a p  then squaring gives  2 2 modnx a p . Hence 2na  is a 

quadratic residue of prime p. This completes our proof. 
■ 
 

5. We need to prove 1 2 1 2 3n na a a a a a a
p p p p

                                               


 . How? 

Use mathematical induction. 
Proof. 
By Proposition (7.9) part (c): 

a b a b
p p p
                           

  

We have the base case 1 2 1 2a a a a
p p p

                             
.  

Assume the result is true for n k : 

1 2 2 3k ka a a a a a a
p p p p

                                               


  (*) 

We need to prove this for the case 1n k  :  

1 11 2 2 3

by (*)

2 3 1 By the base case

k kk k

k k

a aa a a a a a a
p p p p p p

a a a a a
p

 



                                                                

               








  

Hence by mathematical induction we have our result. 
■ 
 

6. We need to prove that 
1 2

1 2
nk k k

np p pa
p p p p

                                         
 . 

Proof. 

We are given that 1 2
1 2

nk k k
na p p p     so by the result of the previous 

question we have 
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

1 2 1 2

1 2

1 2 1 2

1 2

by result of
previous question

n n

n

k k k k k k
n n

k k k

n

p p p p p pa
p p p p p

p p p
p p p

                                                             
                               





  

This is our required result. 
■ 
 

7. We are required to prove that if  1 mod 4p   then 
1

2
p

a


, where  gcd , 1a p  , 

is a quadratic residue of p. 
Proof. 

We are given that  1 mod 4p   so 4 1p k   for some integer k. Consider the 

residue 
1

2
p

a


: 
1 4 1 1

22 2
p k

ka a a
  

  .     

By the result of question 4 we have 2ka  is a quadratic residue of p so 
1

2
p

a


 is a 
quadratic residue of p. 

■ 
 

8. We need to prove  
1

21 1
p

p

        
 given that p is an odd prime.  

Proof. 
By Proposition (7.8): 

 
1

2 mod
pa a p

p

      
  

We have    
1

21 1 mod
p

p
p

        
. We are given that p is an odd prime so 3p   

which implies that 

   
1

21 1 mod
p

p
p

        
.      

 
1

21
p

 can only take values of 1 or 1  so  
1

21 1
p

p

        
. 

■ 
 

9. (i) We are asked to show that if  2 1p x   then  1 mod 4p  . 
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Proof. 
From the definition of congruence, we have 

     2 2 21 1 0 mod 1 modp x x p x p       

Hence  2 1 modx p  has solutions because we are given  2 1p x   so 

 1 mod 4p  . Why? 

Because by question 6 of Exercises 7.1: 

1  is a quadratic residue of an odd prime p   1 mod 4p  . 

we have 1  is a QR implies that  1 mod 4p  . 

This completes our proof. 
■ 

(ii) We need to prove there are an infinite number of primes of the form 4 1n  . 
Proof. 
Assume there are only a finite number of primes 1 2, , , mp p p  of the form  

4 1n  . Consider the number  

 21 22 1mN p p p      . 

Let p be a prime factor of N. By part (i) we have  1 mod 4p  . Since p N  so 

p 1 2, , , mp p p  because if p was equal to one of these then 1p . 

Hence p is not amongst the finite list of primes 1 2, , , mp p p  and  1 mod 4p   

therefore 4 1p n   which implies there are infinite number of primes of the form 
4 1n  . 

■ 
 

10. We need to prove that 
2ab a

p p

             
. 

Proof. 
By Proposition (7.9) part (c): 

a b a b
p p p
                           

  

We have 
2 2ab a b

p p p

                 
. By Proposition (7.9) part (b): 
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2

1x
p

      
  

We have 
2

1b
p

      
. Substituting this 

2

1b
p

      
 into the above 

2 2ab a b
p p p

                 
 

yields 
2ab a

p p

             
.        

This completes our proof. 
■ 

 

11. We are required to prove that 
1

1
0

p

a

a
p





       . How do we prove this? 

We use Proposition (7.4): 

Let p be an odd prime. Then there are exactly 1
2

p   quadratic residues and 

1
2

p   quadratic non-residues of p. 

Proof.  

By the above proposition we have exactly 1
2

p   quadratic residues which means 

for these residues we have 1a
p
      

 and for the remaining 1
2

p   residues we have  

1a
p
       

. Hence  

   1

1

1 1
0

2 2

p

a

p pa
p





           .     

This is our required result. 
■ 

 
12. (a) We need to prove 2nr  is a quadratic residue of p. 

Proof. 
The quadratic congruence  

 2 2 modnx r p   

has a solution because  modnx r p  satisfies this congruence. Hence 2nr  is a 

quadratic residue of p. 
■ 
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(b) We need to prove 2 1nr   is a quadratic non - residue of p. 
Proof. 
Consider the quadratic congruence 

 2 2 1 modnx r p   

Taking the indr of both sides of this equation which converts into linear form: 

         
1

2 ind 2 1 ind 2 1 mod 1r rx n r n p


      


. 

The  gcd 2, 1 2p    but 2  2 1n   which implies this congruence  

     2 ind 2 1 mod 1r x n p    . 

has no solutions, so 2 1nr   is a quadratic non - residue of p. 
■ 

(c) Half the residues are quadratic residues and half are quadratic non-residues of 
modulo p. 
Proof. 

 By the Primitive Root Theorem (6.22): 

Every prime p has a primitive root. 

we have a primitive root r modulo p.   

The reduced residue system modulo p is given by  1, 2, , 1p   and each of these 

can be expressed as  modkr a p  where  1, 2, , 1a p  . The even powers 

such as 2mr  in this list satisfy the quadratic congruence  

   22 2 modm mx r r p  . 

By Proposition (3.14) (b): 

 2 2 moda b p     moda b p   

We have  modmx r p   so these are the quadratic residues of p. There are  

1
2

p   residues in  1, 2, , 1p   which have base r with an even index.  

Hence there are 1
2

p   quadratic residues of p.  

Additionally, there are 1
2

p   residues in  1, 2, , 1p   which have no  

solutions to the quadratic residues  2 modx a p  where  1, 2, , 1a p   so  

there are 1
2

p   quadratic non – residues of p. This completes our proof. 
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■ 
 

13. We need to find the quadratic residues of 17. We are given that 3 is a primitive 
root of 17 so we need to find the even powers of 3. Why? 
By the result of the previous question part (a) we showed that 2nr  is a quadratic 
residue of prime p. 

 
   

 
     

   
     

     
     

2

24 2 2

6 4 2

2 28 4

10 8 2

2 212 6

14 8 6

2 216 8

3 9 mod 17

3 3 9 81 4 13 mod 17 (*)

3 3 3 4 9 36 2 15 mod 17

3 3 4 16 1 mod 17

3 3 3 1 9 9 8 mod 17

3 3 2 4 mod 17

3 3 3 1 2 2 mod 17

3 3 1 1 mod 17



    

       

     

       

   

      

   

  

The quadratic residues of 17 are 1, 2, 4, 8, 9, 13, 15 and 16.  

To find the square roots of  13 mod 17  we need to solve the quadratic 

 2 13 mod 17x    

By the above we have that 3 is a primitive root of 17 so taking indices to the base 
3 which converts the quadratic into linear form we have 

    3 32 ind ind 13 mod 16x   

By (*) we have  3ind 13 4 . Substituting this into the above yields 

       3 32 ind 4 mod 16 ind 2 mod 8x x    . 

Hence the square roots of  13 mod 17  are  

 2 ,3 9 9 9 9, 8 mod 17x        . 

 
14. We are given that 2 is a primitive root of 101 and we need to solve the quadratic 

 2 14 mod 101x  . Taking indices to the base 2 to convert the quadratic into 

linear form gives 

    2 22 ind ind 14 mod 100x    (�) 

We must find what power of 2 gives 14 modulo 101. Computing powers of 2: 

 72 128 27 mod 101    
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 82 27 2 54 mod 101    

 92 54 2 108 7 mod 101     

 102 7 2 14 mod 101    

From the last result we have  2ind 14 10  and substituting this into (�) gives 

       2 22 ind 10 mod 100 ind 5 mod 50x x    . 

 Therefore, the square roots of  14 mod 101  are given by 

 5 ,2 32 32, 32 32 69 mod 101x        . 

 


