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Complete Solutions to Exercises 7.3 
 

1. In each case we use the formula: 

(7.17)    
   
   

if  1 mod 4 or 1 mod 4

if  3 mod 4 and 3 mod 4

q p q
p p

qq p q
p

                           

 

 

(a) We need to evaluate the Legendre symbol 12
71
     

. The number 12 is composite, 

that is 212 4 3 2 3     so  



2 2

1 because we
have 2 squared

12 2 3 2 3 3
71 71 71 71 71



                                            
 

Since  71 3 mod 4  and  3 3 mod 4  so by the above formula (7.17): 

 3 71 2 1 because 2 1 mod 3
71 3 3 3
                                                  

 

By Proposition (7.11): 

 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
 

Our prime 3p   so we have  3 3 mod 4  therefore 1  is a quadratic non-

residue. Hence 1 1
3

        
. Substituting this into the above gives 

 12 3 1 1 1
71 71 3
                               

 

(b) This time we need to evaluate the Legendre symbol 15
101
     

. Since 15 5 3   we 

have 

15 5 3
101 101 101
                        

  (*) 

Since  101 1 mod 4  so applying formula (7.17) we have 

5 101 1 1 Because 1 is a quadratic residue
101 5 5
                                  
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Similarly we have 

   Because 101 2 mod 3  and 3 3 mod 43 101 2 1 1
101 3 3 3 so 1 is a quadratic non-residue

                                                     
 

Putting these 5 1
101
      

 and 3 1
101
       

 into (*) gives 

 15 5 3 1 1 1
101 101 101
                               

. 

(c) Similarly evaluating the Legendre symbol 28
163
     

: 


2

2

1 because we
have a square, 2

28 7 4 7 4 7 2 7
163 163 163 163 163 163 163



                                                                      
   †  

How do we find 7
163
     

? 

Use the above formula (7.17). Since  163 7 3 mod 4   we have 

 7 163 2 Because 163 2 mod 7
163 7 7
                                    

 

Using Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

We have  7 1 mod 8p    so  

 2 1 1
7
         

. 

Substituting 7 2 1
163 7
                 

 into  †  gives 

28 7 1
163 163
                

 

(d) We need to evaluate 75
541
     

. Since 75 3 25   so 



2

1

75 3 25 3 5 3
541 541 541 541 541 541



                                                    
. 

Note that 541 is congruent to 1 modulo 4 so by formula (7.17) we have 
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 


541 1 mod 3

3 541 1 1
541 3 3

                            
. 

Hence 75 1
541
      

. 

(e) This Legendre symbol 360
1223
     

 is more difficult to evaluate than the previous 

ones. First note that 3 2360 2 3 5    so we have 
3 2 3 2

2 2

1 1

360 2 3 5 2 3 5
1223 1223 1223 1223 1223

2 2 3 5 2
1223 1223 1223 1223 1223

 

                                         
                                      

5
1223
      

 

To evaluate 2
1223
     

 we use Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

Since  1223 7 1 mod 8p     so 2 1
1223
      

. Evaluating 5
1223
     

 by using 

formula (7.17) we have 

 
 

5 1223 Because  5 1 mod 4
1223 5

3 5 2 1 By (7.15) with 3 3 mod 8
5 3 3

p

                     
                                      

 

Substituting 2 1
1223
      

 and 5 1
1223
       

 into 360 2 5
1223 1223 1223
                        

 gives 

 360 2 5 1 1 1
1223 1223 1223
                             

. 

(f) This time we need to evaluate 115
1987
     

. The number 115 is composite because 

115 5 23  . We have 

115 5 23
1987 1987 1987
                           

 (*) 

We have  5 1 mod 4  so by formula (7.17): 

 5 1987 2 Because  1987 2 mod 5
1987 5 5
                                  

 



Complete Solutions 7.3       Page 4 of 26 
 

The prime  5 3 mod 8p    so by Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

we have 2 1
5
       

. Evaluating the other Legendre symbol in (*): 

 
 

2
2

23 1987 Because 1987 23 3 mod 4
1987 23

9 Because 1987 9 mod 23
23
3 1 Because we have  3
23

                       
            
            

 

Substituting 2 1
5
       

 and 23 1
1987
       

 into (*) gives 

  115 5 23 1 1 1
1987 1987 1987
                            

. 

(g) We are required to evaluate 700
3571
     

. Writing the factors of 700 we have 

2 2700 2 5 7   . 
Therefore 

2 2700 2 5 7 7 71 1
3571 3571 3571 3571 3571 3571

                                                      
 

Both  3571 7 3 mod 4  . So using formula (7.17) we have 

 7 3571 1 1 Because  3571 1 mod7
3571 7 7
                                     

 

Hence 700 7 1
3571 3571
                

.  

(h) We need to evaluate 703
4409
     

. By hint we have 703 19 37  . 

Using this to find the given Legendre symbol: 

703 19 37 19 37
4409 4409 4409 4409
                                        

 (*) 

Evaluating each of the Legendre symbols on the right-hand side: 
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 
 

19 4409 Because 4409 1 mod 4
4409 19

1 1 Because 4409 1 mod 19
19

                     
            

 

Finding the other Legendre symbol: 

 
 

37 4409 Because 4409 1 mod 4
4409 37

6 Because 4409 6 mod 37
37

                     
           

 

Since 6 2 3   we have 

 

6 2 3
37 37

2 3 �
37 37

              
               

 

The prime  37 5 3 mod 8p     so by Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

we have 2 1
37
       

. 

Evaluating 3
37
     

 gives 

 
 

3 37 Because  37 1 mod 4
37 3

1 1 Because  37 1 mod 3
3

                     
            

 

Substituting 2 1
37
       

 and 3 1
37
      

 into (�) gives 

6 2 3 1 1 1
37 37 37
                               

. 

Hence 37 6 1
4409 37
                

. Substituting 19 1
4409
      

 and 37 1
4409
       

 into (*) 

gives 

 703 19 37 1 1 1
4409 4409 4409
                               

. 
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2. (a) We need to test whether 14 is a quadratic residue of 131. This means we need 

to evaluate the Legendre symbol 14
131
     

. Since 14 2 7   we have 

14 2 7 2 7
131 131 131 131
                                        

 (*) 

The prime  131 3 mod 8p    so by Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

we have 2 1
131
       

. Evaluating the other Legendre symbol on the right - hand 

side of (*): 

 
 
 

7 131 Because 131 7 3 mod 4
131 7

5 Because 131 5 mod 7
7
7 2 Because 7 2 mod 5
5 5

                       
            
                        

 

We need to find the Legendre symbol 2
5
     

. Since  5 3 mod 8p    so by the 

above Proposition (7.15) we have 2 1
5
       

. Substituting this into the above 

derivation gives 

 7 2 1 1
131 5
                   

.     

Substituting 2 1
131
       

 and 7 1
131
      

 into (*) gives 

 14 2 7 1 1 1
131 131 131
                               

. 

Hence 14 is a quadratic non-residue of 131. 
(b) This time we need to test whether 12 is a quadratic residue of 131: 

2 212 2 3 2 3 3 31
131 131 131 131 131 131

                                                          
 (*) 

Since  131 3 mod 4  so by formula (7.17): 

 3 131 2 1 Because  2 1 mod 3
131 3 3 3
                                                  
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By Proposition (7.11): 

 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
 

We have prime  3 3 mod 4p    so 

1 1
3

       
 

Therefore  3 1 1 1
131 3
                   

. Putting this into (*) gives 

12 3 1
131 131
               

 

Therefore 12 is a quadratic residue of 131. 
(c) This time we need to find whether 15 is a quadratic residue of 131. This means 

we need to evaluate the Legendre symbol 15
131
     

: 

15 5 3
131 131 131
                           

  �   

Since  5 1 mod 4  so we have 

 5 131 1 1 Because  131 1 mod 5
131 5 5
                                   

 

The other Legendre symbol, 3
131
     

, on the right hand side of  † , we evaluated in 

part (b): 

3 1
131
      

         

Substituting 5 1
131
      

 and  3 1
131
      

 into  �  gives 

15 5 3 1 1 1
131 131 131
                              

. 

Hence 15 is a quadratic residue of 131.  
(d) We need to test whether 65 is a quadratic residue of 131. Since 65 5 13  , 

the Legendre symbol 65
131
     

 is 

65 5 13 5 13
131 131 131 131
                                        

 (*) 
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The Legendre symbol 5
131
     

 we evaluated in part (c): 

5 1
131
      

 

We need to work out 13
131
     

. Since  13 1 mod 4  so 

 13 131 1 1 Because  131 1 mod 13
131 13 13
                                   

 

Substituting 5 1
131
      

 and 13 1
131
      

 into (*) gives 

65 5 13 1 1 1
131 131 131
                              

. 

Hence 65 is a quadratic residue of 131. 
 

3. (i) We need to show 2 is a quadratic residue of prime p    1 mod 8p   . 

Proof. 

  . If  1 mod 8p    then by Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

We have the Legendre symbol 2 1
p
      

 so 2 is a QR of p. 

  . Assume 2 is a QR of p that is 2 1
p
      

. Required to prove that 

 1 mod 8p   . By Corollary (7.18): 

 
2 1
82 1

p

p

       
 where p is an odd prime. 

We are assuming 2 1
p
      

 therefore 
2 1
8

p   is even. Remember p is an odd prime 

so  1 mod 8p    or  3 mod 8p   . From  1 mod 8p    we have 8 1p k   

where k is an integer. We obtain 

     
2

2 28 1 1 16 4 11 64 16 1 1 2 4 1
8 8 8 8

k k kp k k k k
          . 
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We have  
2 1 2 4 1
8

p k k    is even so  1 mod 8p   . 

If  3 mod 8p   then the index 
2 1
8

p   is even. 

■ 
(ii) (a) We are asked to factorize 218 2 322  . This is an even number so 2 is a 
factor of this 322:  

322 2 161   .       
We need to find the factors of 161. By Corollary (2.10) of chapter 2:  

If 1n    is composite, then it has a prime divisor p such that p n    
. 

Let p be a prime factor of 161 then by this corollary we have 

161 12p     
. 

Since 218 2 322   so by part (i), the prime p must satisfy  1 mod 8p   . The 

only prime less than 12 which satisfies this congruence is 7 and: 
161 23
7

 . 

Therefore 161 7 23   and from above we have 
322 2 161 2 7 23     . 

(b) This time we have to factorize 223 2 527  . Let p be the prime factor of 527 
then by the above Corollary (2.10) we have 

527 22p      . 

Additionally, p must also conform to  1 mod 8p   . The primes below 22 which 

satisfy this congruence are 7 and 17. Let us check 7 first: 

 527 75.29 2dp
7

 . 

Clearly 7 is not a factor of 527. Now we try 17: 
527 31
17

 .  

Hence 17 is a factor of 527 and as 31 is prime so 31 is the other prime factor of 

527. Note that  31 1 mod 8 . We have 

527 17 31  .  
(c) We need to factorize 251 2 2599  . Remember the prime factor p of 2599  

must satisfy  1 mod 8p    because we are given 251 2 2599  . We only need 
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to test the primes below 50 because the floor function of 251 2 2599   is less 
than 51 so it is 50. Hence, we only trial 

7, 17, 23, 31, 41 and 47 
We need to test these primes: 

 2599 371.29 2dp
7

   

 2599 152.88 2dp
17

   

2599 113
23

   

So 23 is a prime factor of 2599. Also 113 must be prime because 113 10    
 and 

we have already tested the prime 7 which is the only one below 10 and satisfies 
the above congruence. Hence 2599 23 113  . 
(d) We are required to factorize 227 2 727  . Let p be a prime factor of 727 then  

the prime factors p must satisfy  1 mod 8p   . The only prime factors are 7, 17 

and 23 below 27: 
727 727 727103.86, 42.76 and 31.61
7 17 23

   .  

Since none of these primes are factors so 727 is prime. 

(e) We are to factorize 2105 2 11 023  . The prime factors p of this are of the 

form  1 mod 8p   . We trial 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, … as factors of 

11 023 and we find that 73 is a factor and 
11 023

151
73

 . Now 151 is a prime. 

Why? 

Because 151 12    
 and the only prime below 12 which satisfy  1 mod 8  is 7 

and as 7 does not go into 11 023 so 7 cannot be a factor of 151. Therefore  
11 023 73 151   

(f) We are asked to factorize 247 2 2207  . Let p be a prime factor of 
247 2 2207   then p must be one of 7, 17, 23, 31, 41 if 2207 is composite. We 

don’t need to go any further because we are given 247 2  and the square root of 
this is going to be less than 47. None of these primes 7, 17, 23, 31, 41 go into 2207 
therefore 2207 is prime. 
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(g) We need to factorize 2195 2 38 023  . We only need to test prime factors p 

which are of the form  1 mod 8p    and below 195. Testing the first few primes 

of this type 7, 17, 23, 31, 41, 47,… we find that 
38 023=47 809  

We now need to test the primality of 809. We have 809 28    
 and there are no 

primes in the above list below 28 which go into 809 because if they did, that prime 
would also go into 38 023. Hence 38 023=47 809 . 

 

4. We need to prove that if p is an odd prime and p a  then  

 1, 2 , 3 , , 0 mod
2

pa a a a p    

How do we prove this? 
Using contradiction. 
Proof. 

Suppose  0 modka p  for an arbitrary k where 11, 2, 3, ,
2

pk
        

 . From 

 0 modka p  we have p ka  and because we are given that p a  so 

 gcd , 1p a  .  

Applying Euclid’s Lemma (1.13): 

If x yz  with  gcd , 1x y   then x z . 

To p ka  gives p k . This cannot be the case because 11, 2, 3, ,
2

pk
        

 . 

We have a contradiction so  0 modka p . 

■ 
 

5. We are required to prove that  
2 1
82 1

p

p

       
 where p is an odd prime. 

Proof. 
How do we prove this? 
By using Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
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We consider the two cases  1 mod 8p    and  3 mod 8p    because we are 

given that p is an odd prime. 
Case I: 

Take  1 mod 8p    then 8 1p k   where k is a positive integer. Then 

 

 

2
2 2

2
2

8 1 11 64 16 1 1
8 8 8

64 16 8 2 2 4 1
8

kp k k

k k k k k k

     

    
  

This  
2 1 2 4 1
8

p k k    implies that 
2 1
8

p   is even, so if  1 mod 8p    then 

by the above proposition (7.15) we have  
2 1
8 21 1

p

p

         
. 

Case II: 

Take  3 mod 8p    then 8 3p k   where k is a positive integer. Then 

 

 

2
2 2

2
2

8 3 11 64 48 9 1
8 8 8

64 48 8 8 6 1 2 4 3 1
8

kp k k

k k k k k k

     

       
  

This  
2 1 2 4 3 1
8

p k k     implies that 
2 1
8

p   is odd, so if  3 mod 8p    

then by (7.15) we have  
2 1
8 21 1

p

p

          
. 

This completes our proof. 
■ 

 

6. We need to show  6111223 2 1 .  

Proof. 
Euler’s Criterion (7.5) is: 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   

 Note that if we let 1223p   then 1 1223 1 611
2 2

p    . If we can show that 2 

is a quadratic residue of 1223 then by Euler’s Criterion we will have  

 
1223 1

61122 2 1 mod 1223


    (*) 

How do we show 2 is a quadratic residue of 1223? 
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By Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

We have  1223 7 1 mod 8   so by (7.15)  

2 1
1223
      

.  

Hence 2 is a quadratic residue of 1223 so by (*) we have 

 6112 1 mod 1223 .  

Therefore  6111223 2 1 .  

 

7. We need to determine x such that  2712 mod 541x . How? 

Well we are given that 541 is a prime so we can test whether 2 is a quadratic 
residue of 541. How? 
By using (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

 541 5 3 mod 8   so by (7.15) we have 2 is a quadratic non – residue of 541, 

therefore by Euler’s Criterion  

 
1

27022 2 1 mod 541
p

  . 

Multiplying this by 2 gives 

   270 2712 2 2 2 1 2 539 mod 541       .  

We have  2712 539 mod 541  which gives  539 mod 541x  . 

 

8. (a) We need to find  99525 mod 1987x . Since 225 5  so it is a quadratic 

residue of 1987 so we have  

 
1987 1

993225 25 1 mod 1987


   (*) 

Therefore  

  995 2 993 2

1 by (*)

25 25 25 25 1 625 1 625 mod 1987


       .  
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(b) We are asked to find  99526 mod 1987x . 

Since 26 2 13   so we check if 26 is a quadratic residue of 1987. Using Legendre 
symbols, we have 

 26 2 13 �
1987 1987 1987
                           

  

Note that  1987 3 mod 8  so by (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

we have 2 1
1987
       

.  

Need to test 13
1987
     

 for quadratic residue: 

 
 

13 1987 11 Because  1987 11 mod 13
1987 13 13

13 2 Because  13 2 mod 11
11 11

                                  
                      

  

Since  11 3 mod 8  so by the above (7.15): 

13 2 1
1987 11
                

.  

Substituting 2 1
1987
       

 and 13 1
1987
       

 into (�) gives 

   26 2 13 1 1 1
1987 1987 1987
                                

. 

This means that 26 is a quadratic residue of 1987 so 

 
1987 1

993226 26 1 mod 1987


   (�) 

However, we need to find  99526 mod 1987x  so multiplying both sides of (�) by 

262 we have 

 995 2 993 226 26 26 26 1 676 mod 1987     .  

    
9. (i) We are required to prove that  

 
 

1 if 1 or 3 mod 82
1 if 1 or 3 mod 8

p
p p

               
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Proof. 
We have  

2 1 2 1 2
p p p p

                                           
 (�) 

Using (7.11): 

 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
 

By (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

 
Consider the four cases: 
Case I: 

Let  1 mod 8p   then  1 mod 4p   so by applying (7.11) and (7.15) on (�): 

2 1 2 1 1 1
p p p

                               
.  

Case II: 

Let  3 mod 8p   then  3 mod 4p   so by applying (7.11) and (7.15) on (�): 

 2 1 2 1 1 1
p p p

                                 
.  

Case III: 

Let  1 mod 8p   then  3 mod 4p   so by applying (7.11) and (7.15) on (�): 

2 1 2 1 1 1
p p p

                               
.  

Case IV: 

Let  3 mod 8p   then  1 mod 4p   so by applying (7.11) and (7.15) on (�): 

 2 1 2 1 1 1
p p p

                                 
.  

Combining all four cases together we have 

 
 

1 if 1 or 3 mod 82
1 if 1 or 3 mod 8

p
p p

               
  

This completes our proof. 
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■ 
(ii) We are asked to show that if the odd prime p satisfies  2 2p x   then 

 1, 3 mod 8p  . 

Proof. 

We are given that  2 2p x   so in modular arithmetic we have 

   2 22 0 mod 2 modx p x p    . 

Therefore 2  is a QR of prime p. We have 

2 2 1 1
p p p

                             
. 

This implies that 2 1 1
p p
               

 or 2 1 1
p p
                

. By combining (7.11) and 

(7.15): 

(7.11)
 
 

1 if  1 mod 41
1 if  3 mod 4

p
p p

             
  (7.15)   

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

We obtain  1, 3 mod 8p  . 

 (a) We need to factorize 218 2 326  . Clearly 2 is a factor because we have an 
even number so 218 2 326 2 163    .  

By part (i) we know the prime factors p of 163 satisfy  1 or 3 mod 8p  . There 

are only two primes 3 and 11 below 12 because 163 12    
 which satisfy 

 1, 3 mod 8p   and 3, 11 do not go into 163. Therefore 163 is prime. Thus 
218 2 2 163   . 

(b) We are asked to factorize 223 2 531  . By part (i) we have the only prime 

factors p of 223 2  are the ones which satisfy  1, 3 mod 8p  . The only ones 

below 23 are 3, 11, 17, 19. Testing 3 and 11 as factors is easy as we have done this 
many times before. Since 5 3 1 9    so actually 9 is factor of 531 and  
531 9 59   and 59 is prime. We have 2531 3 59  . 
(c) We need to find the prime decomposition of 251 2 2603  . The prime factors 

p of 251 2 2603   satisfy  1, 3 mod 8p  . We only need to trial the primes 

below 51 of this type; they are 3, 11, 17, 19, 41 and 43. Clearly 3 and 11 are not 
factors of 2603. Testing the remaining primes in the list gives 
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 2603 153.12 2dp
17

  , 2603 137
19

  

We have 2603 19 137  . 
(d) We are asked to find the prime factors of 227 2 731  .  By the result of part 

(i) any prime factors p of 227 2  must satisfy  1, 3 mod 8p  . The only ones 

below 27 are 3, 11, 17 and 19. Using the normal tests for 3 and 11, we find these 
are not factors of 731. Testing the next prime factor, 17, gives 

731 17 43   and 43 is prime. 
Thus, we have 731 17 43  . 
(e) We need to find the prime factors of 2105 2 11 027  . The prime factors p of 

2105 2  must satisfy  1, 3 mod 8p  . The first few below 105 are 3, 11, 17, 19, 

41, 43, 59, 67, 73, 83, 89 and 97.  
Clearly 3 and 11 are not factors of 11 207. Testing the remaining primes, we find 
that none of them are factors of 11 207 so 11 207 is prime. 
(f) Similarly, we find the prime factors of 247 2 2211  . Clearly 3 is a factor of 

2211 as 2 2 1 1 6     and 3 6 . Also 11 is factor because 1 1 2 2 0     and 

11 0 . We have 2211 3 11 67    and 67 is prime so we have our prime 

factorization.  
(g) The obvious prime factor of 2195 2 38 027   is 11 because 

7 2 0 8 3 0      and 11 0 . Hence we have 38027 11 3457   and any prime 

factors of 3457 which must be less than or equal to 3457 58    
. Recall the prime 

factors p of 3457 must be of the type  1, 3 mod 8p  . Clearly 3 and 11 are not 

factors of 3457. We need to test 17, 19, 41 and 43: 

 3457 203.35 2dp
17

 ,  3457 181.95 2dp
19

 ,  3457 84.32 2dp
41

 ,  3457 80.40 2dp
43

  

Hence 3457 is prime so 38027 11 3457  . 
 

10. (a) We need to find 3
13
     

 by using Gauss’s Lemma: 

We find the product of 3 and the 1 13 1 6
2 2

p     least positive residues. That 

is  

              3 1 , 3 2 , 3 3 , 3 4 , 3 5 , 3 6 3, 6, 9, 12, 15, 18S   .  
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The break off point between positive and negative residues occurs at 6. 
We have the following for the prime 13: 

 
There are 2 negative residues

3, 6, 9, 12, 15, 18 3, 6, 4, 1 , 2, 5S
            


 (mod 13) 

Since we have 2 negative residues so by Gauss’s Lemma we have 

 23 1 1
13
        

.  

Therefore 3 is a quadratic residue of 13. 

(b)We need to find 3
17
     

 by using Gauss’s Lemma: 

We find the product of 3 and the 1 17 1 8
2 2

p     least positive residues. We  

have 

                  3 1 , 3 2 , 3 3 , 3 4 , 3 5 , 3 6 , 3 7 , 3 8 3, 6, 9, 12, 15, 18, 21, 24S     

The break off point between positive and negative residues is 8. 
We have the following for the prime 17: 

   
There are 3 negative residues

3, 6, 9, 12, 15, 18, 21, 24 3, 6, 8, 5, 2 , 1, 4, 7 mod 17S
             


  

Since we have 3 negative residues so by Gauss’s Lemma we have 

 33 1 1
17
         

.  

Therefore 3 is a quadratic non - residue of 17. 

  (c) We need to find 3
19
     

 by using Gauss’s Lemma: 

We find the product of 3 and the 1 19 1 9
2 2

p     least positive residues. We 

have the following for the prime modulo 19: 

 
There are 3 negative residues

3, 6, 9, 12, 15, 18, 21, 24, 27 3, 6, 9, 7, 4, 1 , 2, 5, 8S
             


  

Since we have 3 negative residues so by Gauss’s Lemma: 

 33 1 1
19
         

.  

Therefore 3 is a quadratic non - residue of 19. 
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(d)We need to find 3
23
     

 by using Gauss’s Lemma: 

We find the product of 3 and the 1 23 1 11
2 2

p     least positive residues. We 

have the following for the prime modulo 23: 

 
There are 4 negative residues

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33 3, 6, 9, 11, 8, 5, 2, 1, 4, 7, 10S
              


  

Since we have 4 negative residues so by Gauss’s Lemma: 

 43 1 1
23
        

.  

Therefore 3 is a quadratic residue of 23. 
 

11. (i) We are required to prove that 
 
 

1 if 1 or 11 mod 123
1 if 5 or 7 mod 12

p
p p

            
. 

Proof. 

 If  1 mod 12p   then 12 1p k   where k is an integer. We have 

 


 


because 12 1 1 mod 4 12 1 1 mod 3

3 3 12 1 1 1
12 1 3 3k k

k
p k    

                                         
 (*) 

 Similarly, for  11 1 mod 12p    implies 12 1p k   and 

 


 


 
  

because 12 1 3 mod 4 12 1 1 mod 3 because 3 3 mod 4

3 3 12 1 1 1 1
12 1 3 3k k

k
p k     

                                            
 (**) 

 Very similar to these you can show that when  5 or 7 mod12p   that 3 1
p
       

. 

This completes our proof. 
■ 

(ii) We are asked to show that that 3 is a quadratic residue    1, 11 mod 12p  . 

Proof. 

  . From part (i) we have if  1, 11 mod 12p   then 3 1
p
      

 which implies that 3 

is a quadratic residue of p. 

  . Now we assume that 3 1
p
      

 and by (*) and (**) of part (i) we have 

 1 1, 11 mod 12p    .  

■ 
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(iii) (a) We need to find the prime factors of 262 3 3841  . By part (i) we have 

the prime factors p of 262 3 3841   must be of the form  1, 11 mod 12p  . The 

primes of form  1, 11 mod 12p   below 62 are 11, 13, 23, 37, 47, 59 and 61. Clearly 

11 is not factor of 3841. Dividing 3841 by each of remaining primes until we get a 

whole number gives 3841 23 167  . Now 167 is prime because 167 12    
 and 

the only prime of form  1, 11 mod 12p   and 11 is not a factor of 167. Hence 

3841 23 167  .  
(b) We are asked to find the prime factors p of 2104 3 10 813  . They must 

satisfy  1, 11 mod 12p  . Clearly 11 is a factor because 3 1 8 0 1 11      and 

11 11 . We have 10 813 11 983  . Now 983 31    
 so the only primes p which 

are of the form  1, 11 mod 12p   below 31 are 11, 13 and 23. We can test that 11 

is not a factor of 983 so we only need to test 13 and 23: 

 983 75.62 2dp
13

 ,  983 42.74 2dp
23

  

Therefore 983 is prime and 10 813 11 983  . 

(c) The prime factors p of 2200 3 39 997   must satisfy  1, 11 mod 12p  . 

Clearly 11 is not a factor because 7 9 9 9 3 1      and 11 1 . The next few 

primes of this format are 13, 23, 37, 47, 59, 61, … . We trial these primes and find: 
39 997 23 1739  . 

Next, we find the prime factors of 1739 and again they must of the form 

 1, 11 mod 12p  . We know 13, 23 does not go into 1739 so the next prime is 37: 

1739 37 47    
We have our prime factorization 2200 3 39 997=23 37 47    . 

(d) We need to find the prime factors of 2364 3 132 493  . By part (i) we know 

the prime factors p satisfy  1, 11 mod 12p  . Clearly 11 is not a factor of 132 493. 

The next few primes of this format  1, 11 mod 12p   are 13, 23, 37, 47, 59, 61, 71, 

73, … . Dividing 132 493 by each of these gives 
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 132 493
10 191.77 2dp

13
 ,  132 493

5706.57 2dp
23

 ,  132 493
3580.89 2dp

37
 , 

132 493
2819

47
  

Therefore 132 493 47 2819  . Just need to factorize 2819. One prime factor of 

2819 is less than or equal to 2819 53    
. We know 13, 23 and 37 do not go into 

2819 otherwise they would have been factors of 132 493. Just need to check whether 
47 goes into 2819 but it doesn’t so 2819 is prime and 132 493 47 2819  . 

(e) We are asked to factorize 2568 3 322 621  . Let p be a prime factor of 

322 621 then by part (i) p satisfies  1, 11 mod 12p  . The first few primes of this 

format are 13, 23, 37, 47, 59, 61, 71, 73,… . Dividing 322 621 by each of these until 
we get an integer as an answer: 

322 621
24 817 322 621 13 24 817

13
      

Now we find the factors of 24 817: 
24 817

1909 24 817 13 1909
13

      

Now finding the factors of 1909: 

 1909 146.85 2dp
13

 , 1909 83
23

  

Therefore 1909 23 83   where both 23 and 83 and prime. So our prime 
factorization of 2322 621 13 24 817 13 23 83     . 

 

12. (a) We are asked to show that  2 3 mod nx F  where the Fermat prime 

22 1
n

nF    has no solutions for 1, 2, 3, 4n  . How do we show this? 

By using the result of the last question part (i): 

 
 

1 if 1 or 11 mod 123
1 if 5 or 7 mod 12

p
p p

            
 

We have the following: 

When 1n   we have  12
1 2 1 5 5 mod 12F      so by the above result we have 

3 is a quadratic non-residue of 5. 
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When 2n   we have  22
2 2 1 17 5 mod 12F      so by the above result we have 

3 is a quadratic non-residue of 17. 

When 3n   we have  32
3 2 1 257 5 mod 12F      so by the above result we 

have 3 is a quadratic non-residue of 257. 

When 4n   we have  42
4 2 1 65 537 5 mod 12F      so by the above result we 

have 3 is a quadratic non-residue of 65 537. 

(b) We need to prove  22 1 5 mod 12
n

nF    . We use proof by induction. 

For 1n   we have from part (a)  12
1 2 1 5 5 mod 12F     . 

Assume the result is true for n k  that is 

 22 1 5 mod 12
k

kF     (*) 

Consider 1n k  . We need to show that  

 12
1 2 1 5 mod 12

k

kF


     

Examining the indices of the left – hand side yields 
 

 

       

11 22
1

2 2

2 2

2 2

by (*)

2 1 2 1

2 1
2 2 1

4 2 1 4 2 1 3 4 12 5 3 48 17 5 mod 12

kk

k

k

k k

kF

k k






   

 
 
          



 

Hence by mathematical induction we have our result  22 1 5 mod 12
n

nF    . 

13. Proposition (4.19) claims the following: 

If 2 1p n   is prime, then we have the following: 

(a) If  1 mod 8p    then  2 1np  . 

(b) If  3 mod 8p    then  2 1np  . 

Proof. 
We just provide a proof of part (a). Part (b) is very similar. 

We are required to prove that  2 1 modn p . 

Using Proposition (7.15): 

 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

We have 2 is a quadratic residue of p     1 mod 8p   .  
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By Euler’s Criterion (7.5): 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   

With 2a   we have 2 is a quadratic residue of  p     
1

22 1 mod
p

p


 . 

Re-arranging the given prime 2 1p n   to 1
2

p n  . Substituting this 1
2

p n   

into the above gives 

 
1

22 2 1 mod
p

n p


  .       

This completes our proof. 
■ 

 
14. Proposition (4.24) claims the following: 

Let q be an odd prime. Any prime factor p of the composite 2 1q   satisfies 

 1 mod 8p   . 

Proof. 
Let p be a prime factor of 2 1q  . By the definition of congruence we have 

 2 1 modq p   (*) 

By Proposition (4.23): 

Any prime factor p of  2 1q   is of the form 2 1kq  .  

We have 2 1p kq  . Re-arranging this we have  
1

2
p qk    (**) 

Taking the congruence in (*) to the power k gives 

   2 2 1 1 mod
kq qk k p     

Substituting 1
2

pqk   from (**) into the above congruence  2 1 modqk p  yields 

 
1

22 2 1 mod
p

qk p


  .  

By applying Euler’s Criterion (7.5): 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   
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We have  
1

22 1 mod
p

p


  gives us that 2 is a quadratic residue of p. Writing this in 

Legendre symbol means we have 2 1
p
      

.  

By result of question 3(i): 

2 is a quadratic residue of prime p    1 mod 8p   . 

Hence  1 mod 8p   . This completes our proof.  

■ 
 

15. We are asked to find the first primitive root of modulo 223. We are given that 223 
is prime so  223 223 1 222    . The prime factorization of 222 is  

222 2 3 37   , 
and the factors of 222 are 1, 2, 3, 37, 74, 111 and 222. 
We only need to test 74 and 111 as the index since all the others are factors of 111 
apart from 2 which is easily checked.  

If r is a primitive root of modulo 223 then we need to show that 74r   1 mod 223  

and 111r   1 mod 223 . Note that if 223p   then  

223 1 223 1 111
2 2
   . 

We trial 2r   and test  1112 mod 223x . This is given by Euler’s criterion 

because: 

a is a quadratic residue of  p     
1

2 1 mod
p

a p


   

Hence, we test the Legendre symbol 2
223
     

. Since  223 7 1 mod 8    so 2 is a 

quadratic residue of 223 because 

(7.15)      
 
 

1 if  1 mod 82
1 if  3 mod 8

p
p p

              
 

Therefore  1112 1 mod 223  so 2 cannot be a primitive root of modulo 223. We 

don’t need to test whether  742 1 mod 223  because 2 cannot be a primitive root 

of 223. 

Next, we trial 3r   and evaluate the Legendre symbol 3
223
     

. 
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 


 


Because 223 3 mod 4 Because 223 1 mod 3

3 223 1 1
223 3 3 

                               
. 

Therefore 3 is a quadratic non - residue which implies that 3 could be a primitive 

root of 223 because 1113 1    1 mod 223 . We also need to show that 
743   1 mod 223  because if  743 1 mod 223  then 3 cannot be a primitive root of 

223. Computing simpler powers of 3 gives 

 53 243 20 mod 223   

   210 5 23 3 20 400 177 46 mod 223      

 113 46 3 138 mod 223      

 123 138 3 414 32 mod 223       (*) 

 Using these to evaluate  743 mod 223x : 

   
 

 

6 674 12 2

23 2

22

3 3 3 32 9

32 9 32 768 9

210 9 13 9 169 9 1521 183

   

   

           1 mod 223

  

 Since 743 183   1 mod 223  so 3 is a primitive root of 223. 

 We need to use this primitive root 3 to find the square root of  32 mod 223  which 

implies that we need to solve  2 32 mod 223x  . Taking index to the base 3 of 

this yields 

    2
3 3ind ind 32 mod 222x    (�) 

 By the above calculations (*) we have  

 123 32 mod 223  which implies  3ind 32 12 .  

 Substituting this  3ind 32 12  into (�) and using the rules of indices of Chapter 6 

we have  

   
   

2
3

3

ind 12 mod 222

2 ind 12 mod 222 Linear Form

x

x


     

 

The  gcd 2, 222 2  and 2 12  so we have two incongruent solutions. Dividing 

the last congruence by 2 yields 

       3 3ind 6 mod 111 ind 6, 6 111 6, 117 mod 222x x     . 
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Therefore  6 1173 , 3 mod 223x  . We don’t need to evaluate  1173 mod 223  

because the square roots of  32 mod 223  are given by 

 63 729 60 60, 60 60, 163 mod 223x          . 

The square roots of  32 mod 223  are  60, 163 mod 223 . 

 
 

 


