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Complete Solutions to Exercises 2.4

1. (a) We are asked to find 45, 81 
   . The prime factors of 45 and 81 are

245 3 5  and 481 3

Applying Proposition (2.19):

       1 1 2 2 3 3max , max , max , max ,

1 2 3
, k ke f e f e f e f

k
a b p p p p         

Gives

   

2 4

max 2, 4 max 1, 0 4 1

45, 81 3 5, 3

3 5 3 5 405

          
    

(b) Similarly for 2000, 2015 
   we have

 33 4 32000 2 1000 2 10 2 2 5 2 5        

2015 5 403 5 13 31    
Using the above proposition we have

       

4 3

max 4, 0 max 3, 1 max 0, 1 max 0, 1

4 3 1 1

2000, 2015 2 5 , 5 13 31

2 5 13 31

2 5 13 31 806 000

            
   

    

We have 2000, 2015 806 000     .

(c) What do you notice about the two given integers 1000, 1001 
   ?

1000 and 1001 are relatively prime which means they have no factor  1 in

common. Using Proposition (2.20):

Let a and b be relatively prime integers then ,a b a b      .

To the given integers yields

1000, 1001 1000 1001 1 001 000      

2. We need to find the LCM of 10 and 8. In this case it is easier to make a list of

the multiples of 10 and 8:

10, 20, 30, 40, 50, and 8, 16, 24, 32, 40, 48,

Hence 10, 8 40     so we need to purchase 4 packages of hotdogs and 5

packages of buns.
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3. We need to find the LCM of 85 and 91. The prime decompositions of these

numbers are

85 5 17  and 91 7 13 

Hence 85 and 91 are relatively prime because they have no factor greater than 1

in common:

85, 91 85 91 7735      

We need to compare the fractions
64
85

and
69
91

:

64 64 91 5824
85 7735 7735


  [Mechanics]

69 69 85 5865
91 7735 7735


  [Real Analysis]

Therefore Harry performed better on the real analysis paper.

4. (i) In order to find 20, 265, 530 
   we use Proposition (2.23):

1 2 3 1 2 3 1
, , , , , , , , ,

n n n
a a a a a a a a a

             
 

First we find 20, 265 
   . The prime decomposition of these integers is given by

220 2 5  and 265 5 53 

By applying Proposition (2.19):

       1 1 2 2 3 3max , max , max , max ,

1 2 3
, k ke f e f e f e f

k
a b p p p p         

We have
     max 2, 0 max 1, 1 max 0, 12

2

20, 265 2 5, 5 53 2 5 53

2 5 53 2 10 53 1060

              
      

We using the above Proposition (2.23) we have

20, 265, 530 20, 265 , 530

1060, 530 1060 because 1060 2 530

             
           

Hence 20, 265, 530 1060     .

You could also evaluate this directly as follows:

     

2

max 2, 0, 1 max 1, 1, 1 max 0, 1, 1

2

20, 265, 530 2 5, 5 53, 2 5 53

2 5 53

2 5 53 1060

             
  

   

Hence [20, 265, 530] = 1060.
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(ii) We are asked to find
1 1 1
20 265 530
  . We use the result of part (i):

20, 265, 530 1060     to convert these fractions into a common denominator

1 1 53 53
20 20 53 1060


 


1 4 1 4

265 4 265 1060


 


1 2 1 2
530 2 530 1060


 


Adding these gives

1 1 1 53 4 2 59
20 265 530 1060 1060

 
   

5. (i) Since the integers 3 and 4 are relatively prime so

3, 4 3 4 12      
Using Proposition (2.23):

1 2 3 1 2 3 1
, , , , , , , , ,

n n n
a a a a a a a a a

             
 

We have

3, 4, 28 12, 28         
The multiples of 28 are 28, 56, 84 and 84 is also a multiple of 12 so

3, 4, 28 12, 28 84          

(ii) We need to solve
1 1 1

1
3 4 28

x    . Transposing gives

1 1 1
1

3 4 28
28 21 3

1
84 84 84
28 21 3 52 32 8

1 1
84 84 84 21

x
        
        
            

6. (a) We need to find 60, 100 
   . The prime decompositions of these integers are

260 2 3 5   and 2 2 2100 10 2 5   .

Applying Proposition (2.19):

       1 1 2 2 3 3max , max , max , max ,

1 2 3
, k ke f e f e f e f

k
a b p p p p         
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We have
     max 2, 2 max 1, 0 max 1, 22 2 2

2 2

2 3 5, 2 5 2 3 5

2 3 5 300

        
   

Hence 60, 100 300     .

(b) We need to find 600, 1000 
   . Similarly we have

3 2600 2 3 5   and 3 31 000 2 5 

Using Proposition (2.19) we have

     max 3, 3 max 1, 0 max 2, 33 2 3 3

3 3

2 3 5 , 2 5 2 3 5

2 3 5 3 000

        
   

Therefore 600, 1 000 3 000     .

(c) We must determine 6 000, 10 000 
   . We have

4 36000 2 3 5   and 4 410 000 2 5 

Using Proposition (2.19) we have

     max 4, 4 max 1, 0 max 3, 44 3 4 4

4 4

2 3 5 , 2 5 2 3 5

2 3 5 30 000

        
   

Therefore 6 000, 10 000 30 000     .

If the pair of integers are 10 times larger than the corresponding LCM is also 10

times larger.

7. We need to show that , ,ab ac a b c           given that a, b and c are positive

integers.

Proof.

By Proposition (2.22):

 
,

gcd ,

x y
x y

x y

    

And using the given hint    gcd , gcd ,dx dy d x y where 0d  we have
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    Because  is positive

so

,
gcd ,

By hint
gcd ,

gcd , gcd ,a
a a

ab ac
ab ac

ab ac

ab ac

a b c

ab ac b c
a

a b c b c


    

     

 
  



Applying the above Proposition (2.22) again:

 
,

gcd ,

b c
b c

b c

    

Substituting this
 

,
gcd ,

b c
b c

b c

     into
 

,
gcd ,

b c
ab ac a

b c

      gives

 
, ,

gcd ,

b c
ab ac a a b c

b c

            

This is our required result so it completes our proof.

■

8. We are asked to prove ,p q p q      where p q and are primes.

Proof.

By result of question 4 of Exercises 2a we have

p and q be distinct primes then  gcd , 1p q 

Since  gcd , 1p q  so applying Proposition (2.20):

Let a and b be relatively prime positive integers then ,a b a b      .

To ,p q 
   gives ,p q p q      .

This completes our proof.

■

9. We need to prove ,a ma ma     .

Proof.

First note that  gcd ,a ma a . Using Proposition (2.22):

 
,

gcd ,

x y
x y

x y

    

We have
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2

,
gcd ,

a ma ma
a ma ma

aa ma

       [Cancelling]

This completes our proof.

■

10. We are asked to prove ,a bc a b c       given that a, b and a, c are relatively

prime.

Proof.

Using the given hint we have

 gcd , 1a bc 

Applying Proposition (2.20):

Let x and y be relatively prime positive integers then ,x y x y      .

To ,a bc 
   gives ,a bc a b c       . This completes our proof.

■

11. To disprove something we need to produce a counter example.

(a) To disprove 2,p p p     we let 3p  then

3, 3 3     not 23 .

(b) We are asked to disprove ,a b a b      . Let 6a  and 9b  then

6, 9 18 6 9 Not Equal           
(c) We need to disprove the following statement;

If ,a b n     and ,b c m     then ,a c m n      .

Let 6, 8  and  9a b c   then

6, 8 24     and 8, 9 72    

However 6, 9 18     and 18 24 72  [Not Equal].

(d) We have to disprove , , ,a b c a c b c                  .

Let 6, 8  and  9a b c   then

6 8, 9 14, 9 126

6, 9 8, 9 18 72 90

           
            

Since 90 126 so the following statement
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, , ,a b c a c b c                  is false

(e) We are asked to disprove 2, ,ab ac a b c          .

Let 6, 8  and  9a b c   then

2 2

, 6 8, 6 9 48, 54 432

, 6 8, 9 36 72 2 592

ab ac

a b c

                   
              

Actually by the result of question 7 we have , ,ab ac a b c          provided a is

positive.

(f) We need to disprove  gcd , , , ,a b c a b c a b c       .

Let 6, 8  and  9a b c   then

 gcd 6, 8, 9 1 and 6, 8, 9 72    
We have

 gcd 6, 8, 9 6, 8, 9 1 72 72      
But 6 8 9 432   . Hence

 gcd , , , , Not Equala b c a b c a b c            

Note that this result holds for two positive integers;  gcd , ,a b a b a b     
but is false for three positive integers a, b and c. (See result of question 22.)

12. Required to prove that the LCM of two positive integers is unique.

Proof.

Let ,a b be positive integers whose LCM is given by

,a b c    

Suppose ,a b d     where d c .

If d c then ,a b 
   cannot equal d. Why not?

Because by Definition (2.18) part (ii):

Let ,a b m     . Then m satisfies

(ii) if both a n and b n then m n - least multiple.

The smallest multiple is c in this case as c d .

If d c then ,a b 
   cannot equal c because of the above definition, we have a

smaller common multiple d.
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In either case where d c or d c we have a contradiction, so d c which

implies that ,a b 
   is unique.

■

13. For this question we could use Proposition (2.23):

1 2 3 1 2 3 1
, , , , , , , , ,

n n n
a a a a a a a a a

             
 

Or the prime decomposition which is generally easier for our given smaller

numbers.

(a) We need to find 2, 3, 5, 7 
   . In this case as all the numbers are distinct

primes so they are relatively prime to each other (pairwise prime) which means

we can use the following:

2, 3, 5, 7 2 3 5 7 210        
(b) This time we use the prime decomposition method:

We need to find 24, 35, 51, 64 
   . Writing the prime decompositions of each

number gives
324 2 3  , 35 5 7  , 51 3 17  and 664 2

We have

         

3 6

max 3, 0, 0, 6 max 1, 0, 1, 0 max 0, 1, 0, 0 max 0, 1, 0 0 max 0, 0, 1, 0

6 1 1 1 1

24, 35, 51, 64 2 3, 5 7, 3 17, 2

2 3 5 7 17

2 3 5 7 17 114 240

            
    

     

Hence 24, 35, 51, 64 114 240     .

(c) We are asked to find 11, 121, 132, 99, 77 
   .

Writing the prime decompositions of each of these numbers;
2 211 11, 121 11 , 132 12 11 2 3 11       , 299 3 11  and 77 7 11 

Therefore we have
2 2 2

2 2 2

11, 121, 132, 99, 77 11, 11 , 2 3 11, 3 11, 7 11

2 3 7 11 30 492

             
    

Hence 11, 121, 132, 99, 77 30 492     .

14. In this case we need to find the LCM of 6, 8 and 11:

6, 8, 11 6, 8 , 11

24, 11 24 11 264
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Since we are given that the number of soldiers in the battalion is between 500

and 600 and the remainder is 3 so

Number of soldiers  2 264 3 531    .

15. We are asked to prove the following:

Let
1 2 3
, , , ,

n
a a a a be pairwise relatively prime integers then

1 2 3 1 2
, , , ,

n n
a a a a a a a        

How do we prove this?

By mathematical induction.

Proof.

Base case 2n  :

By Proposition (2.20):

Let a and b be relatively prime integers then ,a b a b      .

We have our result for 2n  ; that is

1 2 1 2
,a a a a     

Assume the result is true for n k :

1 2 3 1 2
, , , ,

k k
a a a a a a a         (*)

Required to prove that

1 2 3 1 1 2 1
, , , , ,

k k k k
a a a a a a a a a 
         

By applying Proposition (2.23):

1 2 3 1 2 3 1
, , , , , , , , ,

n n n
a a a a a a a a a

             
 

To the above
1 2 3 1
, , , , ,

k k
a a a a a 
 
   gives

1 2 3 1 1 2 3 1

1 2 1

, , , , , , , , , ,

, By (*)

k k k k

k k

a a a a a a a a a a

a a a a

 



             
            

 



We are given that the a integers are pairwise relatively prime which implies we

have

     1 1 2 1 1
gcd , gcd , gcd , 1

k k k k
a a a a a a     

Using the given hint:

If    1
gcd , gcd , 1

n
a b a b   then  1 2

gcd , 1
n

a a a b    .

And by the above Proposition (2.20) on the above derivation gives
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1 2 3 1 1 2 1

1 2 1

, , , , , ,
k k k k

k k

a a a a a a a a a

a a a a
 



            
    

 


By mathematical induction we have our required result.

■

16. We are asked to prove the following:

Let 1 2 3

1 2 3
ke e e e

k
a p p p p     and 1 2 3

1 2 3
kf f f f

k
b p p p p     be the prime

decompositions of a and b and 0
j

e  and 0
j

f  . Then the LCM is given by

       1 1 2 2 3 3max , max , max , max ,

1 2 3
, k ke f e f e f e f

k
a b p p p p         

Proof.

Let the prime decompositions of a and b be given by

1 2 3

1 2 3
ke e e e

k
a p p p p     and 1 2 3

1 2 3
kf f f f

k
b p p p p    

Let ,a b m     . Required to prove that

       1 1 2 2 3 3max , max , max , max ,

1 2 3
k ke f e f e f e f

k
m p p p p    

Since m is a multiple of both integers a and b so it must have all these primes

and no others (least multiple):

1 2 3

1 2 3
kj j j j

k
m p p p p    

Why?

Because if a prime n
p is missing from m then m cannot be a multiple of both

given integers a and b. This implies that m cannot be the LCM of a and b.

To complete the proof we need to show that the indices

     1 1 1 2 2 2
max , , max , , , max ,

k k k
j e f j e f j e f  

Let us consider the first index,  1 1
max ,e f .

We consider two cases;  1 1 1
max ,j e f and then  1 1 1

max ,j e f . In each case

we derive a contradiction.

Case 1:

If  1 1 1
max ,j e f (

1
j is greater than

1 1
ore f ) then let

     2 2 3 31
max , max , max ,

1 2 3
k ke f e f e fj

k
n p p p p    

Our a is given by the prime decomposition:

1 2 3

1 2 3
ke e e e

k
a p p p p     which implies a n

Similarly, we have b n . Therefore n is a common multiple of a and b.
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Also
     

         

           

2 2 3 31

1 1 1 1 1 2 2 3 3

1 1 1 1 1 2 2 3 3

max , max , max ,

1 2 3

max , max , max , max , max ,

1 2 3

max , max , max , max , max ,

1 1 2 3
*

k k

k k

k k

e f e f e fj

k

j e f e f e f e f e f

k

j e f e f e f e f e f

k

n p p p p

p p p p

p p p p p

 



    

    
 

        







Let

       1 1 2 2 3 3max , max , max , max ,

1 2 3
k ke f e f e f e f

k
m p p p p     

Then m is also a common multiple of a and b because

1 2 3

1 2 3
ke e e e

k
a p p p p     and 1 2 3

1 2 3
kf f f f

k
b p p p p    

Substituting this into (*) gives

 1 1 1max ,

1

j e f
n p m

   which implies n m 

By the definition of the LCM we conclude that n cannot be the least common

multiple of a and b. Why not?

Because the least common multiple n  common multiple m .

Hence with  1 1 1
max ,j e f we have ,a b n     where

     2 2 3 31
max , max , max ,

1 2 3
k ke f e f e fj

k
n p p p p    

Case 2:

If  1 1 1
max ,j e f (

1
j is less than

1 1
ore f ) and without loss of generality

assume  1 1 1
max ,e f e . From this we have  1 1 1 1

max ,j e f e  or
1 1
j e . Let

     2 2 3 31
max , max , max ,

1 2 3
k ke f e f e fj

k
n p p p p     .

Then n is not a multiple of a. Why not?

Suppose n is a multiple of a or a is divisor of n, that is a n .

We are given that 1 2 3

1 2 3
ke e e e

k
a p p p p     so 1

1

ep a and

a n implies    2 21 1
max , max ,

1 1 2
k ke f e fe j

k
p p p p

       
 .

Remember these are all distinct primes so

   2 21 1
max , max ,

1 2 1
gcd , gcd , 1k ke f e fe e

k
p p p p
             



Then by the result of question 24 of Supplementary Problems 1:

If  1 2 n
a b b b   and      1 2 1

gcd , gcd , gcd , 1
n

a b a b a b     then

n
a b .

Applying this to
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   2 21 1
max , max ,

1 1 2
k ke f e fe j

k
p p p p

       
 gives 1 1

1 1

e jp p

This 1 1

1 1

e jp p cannot be right because we are supposing
1 1
j e or

1 1
e j .

Hence our supposition  1 1 1
max ,j e f must be wrong.

Combining both cases together we have

 1 1 1
max ,j e f and  1 1 1

max ,j e f

Therefore  1 1 1
max ,j e f . Similarly we have

     2 2 2 3 3 3
max , , max , , , max ,

k k k
j e f j e f j e f  

Hence        1 1 2 2 3 3max , max , max , max ,

1 2 3
k ke f e f e f e f

k
m p p p p     where ,a b m     .

■

17. We are asked to prove the following:

Let 1 2 3

1 2 3
ke e e e

k
a p p p p     and 1 2 3

1 2 3
kf f f f

k
b p p p p     be the

prime decompositions of a and b and 0
j

e  and 0
j

f  . Then the gcd is given

by

         1 1 2 2 3 3min , min , min , min ,

1 2 3
gcd , k ke f e f e f e f

k
a b p p p p     .

Proof.

Let  gcd ,a b d . Then d must be a product of the given primes:

1 2 3

1 2 3
kj j j j

k
d p p p p     (some j’s may be zero)

The number d cannot have other primes because then d would not be a divisor

of both a and b.

We need to prove that

     1 1 1 2 2 2
, ,min , , min , min ,

k k k
j e f j e f j e f  

We prove  1 1 1
min ,j e f then the others follow a very similar argument.

We consider two cases;  1 1 1
min ,j e f and  1 1 1

min ,j e f . Then derive a

contradiction in both cases.

Case 1:

Suppose  1 1 1
min ,j e f . Without loss of generality assume  1 1 1

min ,e f e

so  1 1 1 1
min ,j e f e  or

1 1
j e .

Consider
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     2 2 3 31
min , min , min ,

1 2 3
k ke f e f e fj

k
g p p p p     .

From this we have 1

1

jp g because 1

1

jp is a factor of g.

Then g a . Why not?

Suppose g a and we already have 1

1

jp g so 1

1

jp a . We are given that

1 2 3

1 2 3
ke e e e

k
a p p p p    

Therefore from 1

1

jp a we have

 1 1 2 3

1 1 2 3
kj e e e e

k
p p p p p   

All these primes p’s are distinct so

     1 2 1 3 1

1 2 1 3 1
gcd , gcd , gcd , 1kj e j e j e

k
p p p p p p   

By the result of question 24 of the Supplementary Problems 1:

If  1 2 n
a b b b   and      1 2 1

gcd , gcd , gcd , 1
n

a b a b a b    

then
n

a b .

Applying this result to

 1 1 2 3

1 1 2 3
kj e e e e

k
p p p p p    gives 1 1

1 1

j ep p

This 1 1

1 1

j ep p is impossible because from our supposition we have
1 1
j e .

Hence  1 1 1
min ,j e f .

Case II:

Suppose  1 1 1
min ,j e f . Consider

     2 2 3 31
min , min , min ,

1 2 3
k ke f e f e fj

k
g p p p p    

Then g is a common divisor of a and b. However

 gcd ,g a b

Why not?

Suppose  gcd ,g a b . Let us define d by

       1 1 2 2 3 3min , min , min , min ,

1 2 3
k ke f e f e f e f

k
d p p p p     .

Therefore, d is also a common divisor of a and b. By Definition (1.4) (ii):

The positive integer g is the gcd of integers a and b 

(ii) c a and c b then c g . [g is the largest of the common divisors]

We have d g . This is impossible because
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   2 21
min , min ,

1 2
k ke f e fj

k
g p p p    and      1 1 2 2min , min , min ,

1 2
k ke f e f e f

k
d p p p   

And in our supposition we have  1 1 1
min ,j e f so g d .

Hence  gcd ,g a b . Therefore  1 1 1
min ,j e f .

Putting both of these cases together  1 1 1
min ,j e f and  1 1 1

min ,j e f we

must have  1 1 1
min ,j e f .

Similarly we can show that

     2 2 2 3 3 3
, ,min , , min , min ,

k k k
j e f j e f j e f  

This completes our proof.

■

18. We are asked to prove:

If ,a b m     and n is a common multiple of a and b then m n .

Proof.

Suppose m n . By the division algorithm we have unique integers q and r such

that

n mq r  where 0 r m  (*)

We are given that n is a common multiple of a and b so a n and m is a

common multiple of a and b so a m . Therefore there are integers x and x 

such that

ax n and ax m 

Substituting these into (*) yields

 ax ax q r a x x q r a r       .

Since both m and n are common multiples of b so similarly we can show that

b r

From both of these a r and b r we conclude that r is a common multiple of

a and b. From (*) we have 0 r m  . This is a contradiction. Why?

Because we are given ,a b m     and by the definition of least common

multiple we must have the common multiple r satisfying r m because m is

the least common multiple.

Our supposition m n must be wrong so m n .
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This completes our proof.

■

19. We are asked to prove the following:

Let
1 2 3
, , , ,

n
a a a a be positive integers then

1 2 3 1 2 3 1
, , , , , , , , ,

n n n
a a a a a a a a a

             
 

Proof.

Let
1 2 3
, , , ,

n
a a a a l     and

1 2 3 1
, , , , ,

n n
a a a a a m
       

 . Required to

prove that l m . How?

We show that m l and then show l m . Of course this can only imply

l m .

Case I: Showing m l .

Since
1 2 3
, , , ,

n
a a a a l     so l is a common multiple of all the a’s;

1 2 3
, , , and

n
a l a l a l a l

Therefore, l is a common multiple of
1 2 3 1
, , , ,

n
a a a a  . So l is a common

multiple of

1 2 3 1
, , , ,

n
a a a a 
 
   .

Since l is a common multiple of all the a’s so it is a multiple of n
a . Hence it is

a common multiple of
1 2 3 1
, , , ,

n
a a a a 
 
   and

n
a so by the definition of the

least common multiple (2.28) part (ii):

Let m be the LCM of a and b, that is ,a b m     . Then m satisfies

(ii) if both a l and b l then m l - least multiple

We have m l because
1 2 3 1
, , , , ,

n n
m a a a a a

       
 .

Case II: Showing l m .

Now going the other way m is a common multiple of

1 2 3 1
, , , ,

n
a a a a 
 
   and

1n
a  .

Let
1 2 3 1
, , , ,

n
a a a a m
     .

Therefore m is a common multiple of only these a’s;

1 2 3 1
, , , and

n
a m a m a m a m

    (*)
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From
1 2 3 1
, , , , ,

n n

m

a a a a a m



 
       
  




we have the common multiple m satisfying

m m and
n

a m

From (*) and this m m we have

1 2 3 1
, , , and

n
a m a m a m a m

Since we have n
a m so m is also a common multiple of all the a’s.

Again, by the above definition (2.28) part (ii) we have l m .

Therefore we have m l because we have shown m l and l m .

This completes our proof.

■

20. We are asked to prove  , 1 1n n n n       .

Proof.

First  gcd , 1 1n n   . Why?

Because we have already shown that the gcd of two consecutive integers is 1.

(See question 6(b) of Exercises 2.1.)

Now applying Proposition (2.21):

Let a and b be relatively prime positive integers then ,a b a b      .

To a n and 1b n  gives

 , 1 1n n n n      
This completes our proof.

■

21. We are asked to prove that    gcd , gcd , ,a b a b a b      .

Proof.

Let  gcd ,g a b . Then there are integers x and y such that

gx a and gy b (*)

Substituting this into  gcd , ,a b a b     gives
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gcd , , gcd , ,

By result of question 7;
gcd , ,

, ,

By Proposition (1.11);
gcd , ,

gcd , gcd ,

a b a b gx gy gx gy

g x y g x y
gx gy g x y

g x y x y
ab ac a b c

           
 
                    
 
           

The  gcd , 1x y  . Why?

Because by Proposition (1.5):

If  gcd ,a b g then gcd , 1
a b
g g

      

From (*) we have

a
x

g
 and

b
y

g
 so by Proposition (1.5)  gcd , 1x y 

Since  gcd , 1x y  so x and y are relatively prime which implies ,x y xy     .

Substituting this ,x y xy     into the above derivation gives

     gcd , , gcd , , gcd ,a b a b g x y x y g x y xy                (‡)

Applying the given hint:

If  gcd , 1x y  then  gcd , 1x y xy  .

To (‡) gives

 gcd , , 1a b a b g g      

Note that  gcd ,g a b so

   gcd , , gcd ,a b a b g a b     
This completes our proof.

■

22. We are asked to prove  gcd , , , ,a b c ab ac bc a b c       .

Proof.

Using the given hint     gcd , , gcd gcd , ,a b c a b c and Proposition

(2.23):

1 2 3 1 2 3 1
, , , , , , , , ,

n n n
a a a a a a a a a

             
 

We have
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By result of question 7;

, ,

gcd , , , , gcd gcd , , , ,

gcd gcd , , , ,

xy xz x y z

a b c ab ac bc a b c ab ac bc

a b c ab c a b

          

               
 
 
 

        
 
  



Applying Proposition (2.22):

 gcd , ,x y x y xy    

To ab gives  gcd , ,a b a b ab     . Putting this into the above derivation:

    
    

      
  
 

by result of question 7

By (2.22) gcd , ,

gcd , , , , gcd gcd , , , ,

gcd gcd , , gcd , , , ,

, gcd gcd , , gcd , ,

, gcd ,

x y x y

a b c ab ac bc a b c ab c a b

a b c a b a b c a b

a b a b c a b c

a b a b c



               
              

          
     

 

 

with gcd ,  and

gcd ,

x y
x a b y c

ab

a b

    
 





 

By Proposition (2.22)

gcd ,a b



c

abc





This is our required result so it completes our proof.

■


