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Complete Solutions to Exercises 4.2
1. (a) We have

tr 1
U:
08 1
0.6 [
(-1j
v=
04
1

02

Evaluating the inner (dot) product of these gives
1

(u, V)=u-v= [J[j) = (1x(-1))+(1x1) =-1+1=0

Thus vectors u and v are orthogonal.

(b) We have u :L_ZJ and v :( 3J:
-3 -2

Evaluating the inner (dot) product of these gives

-2 3
{u, v)= u'v=L_3J‘[_2J=(—2x3)+(—3x(—2))=—6+6= 0
Thus vectors u and v are orthogonal.

—4 5
(c) We are given u:£ SJ and v:( 4J:

Evaluating the inner (dot) product of these gives
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—4
(u, v>:u-v=£ SJ( ZJ:(—4><5)+(5><4)=—20+20:0
Thus vectors u and v are orthogonal.

2 —7
(d) We are given u = [7J and v :L ZJ:

-6 4 2 s x -
-2

Evaluating the inner (dot) product of these gives

2\ (-7
(u, v>:u-v:£7J-[ 2]:(2x(—7))+(7x2):—l4+l4:O
Thus vectors u and v are orthogonal.

a
2. We need to show that the inner product for u = [bJ and v :L

e

=—-ab+ab=0
Hence the vectors u and v are orthogonal.

is zero.
a

We have

5 0 0
3. (@ Wearegivenu={0|, v={1| and w=| 0 |. To check orthogonality:
0 0 10

5)Y(0
(u, v)u-v[OJ- 1 |=(5%0)+(0x1)+(0x0)=0
0)\0

5)(0
(u, wy=u-w= 0] 0 |=(5x0)+(0x0)+(0x10)=0
0) (10
0)(0

(v, wy=v-w=[1 |0 |=(0x0)+(1x0)+(0x10)=0
0) (10
All 3 vectors u, v and w are orthogonal.
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0 1 -3
(b) We are given the vectors u=|{ 0|, v=| 1| and w=| 10 |. What do you notice
0 -1 7

about the vector u?

u =0 [Zero Vector]. What do we know about the orthogonality of the zero vector?

By Proposition (4-6) which says every vector is orthogonal to the zero vector. We only
need to check orthogonality of vectors vand w:

1) (-3
(v, w)=v-w=| 1| 10 |=(1x(-3))+(1x10)+(-1x7)=0
-1 7

. 3 7 2 1 .
4. (a) We are given A:L5 4J and B:L7 _12J.Applymg (A, B}:tr(BTA)

gives
R A

2 7 )\(3 7
=tr
1 -12)\5 4
41 =
=tr =41-41=0
* 41

Thus matrices A and B are orthogonal.
(b) Since matrices A and B are orthogonal we can apply Pythagoras’s Theorem (4-5):

|A+BI" =]Al +[Bff *)

We can evaluate ||A||2 and ||B||2 by the inner products:

= wy=lara)-ol (¢ ()

o 3 2

34
=tr =34+65=99
65

*

ot -w ool 2 2
:t{ﬁ —12][3 —12ﬂ

*
:tr( ) 53+145=198
* 1

Similarly

45
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Substituting ||A||2 =99 and ||B||2 =198 into (*) and taking the square root gives:

|A+B|= A +|BJ =+/89+198 =17.23 (2dp)

5. (a) We have
-2

(u, Vy=u-v= : =(1x(=2))+(2x3)+(3xk)+(4x5)

1
2
5|
4
=—2+6+3k+20=24+3k=0

Solving 24+3k =0 gives 3k=-24 = k=-8.
(b) Similarly we have

k) (2
1|14
(u v>:u V= el :(k><2)+(—1><4)+(k><k)+(1><5)
1/)\5
=2k—4+k*+5=k*+2k+1=0
Solving the quadratic gives
k®+2k+1=0

(k+1)°=0 = k=-1

6. Cauchy Schwarz Inequality is |(u, v)|<|ul||v].
(a) We need to verify \(f g)\ <|f|llo]| . Evaluating the inner product and the norms:

(f, 9)=(x, x—1>:I:x(x—1)dx

=[(x*-x)dx  [Expanding x(x-1)]

X 271
:[g—?}o [Integrating |
_[1_1}__3
13 2] 6
1] 1
f, o) =|-=|==.
(F. o) ‘6 5

Initially we determine ||f||2 and ||g||2 and then take the square root:
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I =(F, )=, T (0F (x) o
—J. XX dx = jx dx—{;L:%

lolf =(a. 9)=] a(

=[x

3 2 !
_[ x —2x+1 = X——2X—+x :1—1+1:1
3 2 . 3 3

Taking square root of ||f||2 =% and ||g||2 =% gives

1 1
fl=—— and [|g|=—~
= and fol=x
Hence |f||o L1 1 and this shows Cauchy Schwarz Inequality:

3.3

Wl

1
(f. o)=5<3 —||f||||9||

(b) We need to verify [(f, g)|<|f[]g] for f =f ( )=1and g=g(x)=e". Evaluating

the inner product and the norms for f =1 and g =e*:
(f, g>:<1, ex>:_|.01eX dx
= [eX]Z [Because J'eX dx = ex}
=[e'-1]=e-1=1.72 (2 dp)
(f, g)|=[L.72|=1.72.
First we determine ||f||2 and ||g||2 and then take the square root:
If| = j ldx=[x], =1
o = (0, g)= " ox

L 2 ! 0?1
= [ e dx={ } = =3.19 (2dp)
0 o 2

Taking square root gives
[fll=+1=1 and |g|=+/3.19 =1.79
Hence |f|||o] =1x1.79 =1.79 and this shows Cauchy Schwarz Inequality
(f. g)f=1.72<1.79=]f|[q]

7. Need to show the following result
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Xy
<|(-Z, LV\<1
<||X|| ||y||>

Since we have the modulus symbol which measures the absolute value so clearly we
have the given expression is > 0. Using Cauchy Schwarz inequality:

4-3)  [u, v)|<|ulv]

By Proposition (4-7) we know that ﬁ and ”3:—” are unit vectors so they have a norm or

length of 1. Hence we have our result:

<

X
||

<ﬁ ”z—”> < ﬁ ﬁ“:lxlzl
8. (a) We have
(f, g)={(cos(x), sin(x))
:J'_’;cos(x)sin(x)dx
:%j:sin(Zx) dx [Because cos(x)sin(x):%sin(ZX)}
Z—%{%ZX)} : {Because jsin(kx) dX:_COSékX)}

_%{cos(lZﬁ)—cos(ZZﬂ)} _ -%[1_1] ~0

Hence f and g are orthogonal.
(b) We need to show [(f, g)|<] f||g|. Whatis |(f, g)| equal to?

By part (a) we know f and g are orthogonal therefore Kf g)‘ =0. By properties of a
norm, Proposition (4-2) part (a), we know||f| >0 and |g||>0 therefore we have Cauchy
Schwarz Inequality |(f, g)| <| f[[g]-

(c) The Minkowski Inequality is |[f +g| <|[f|+]g|. We first find the square of these, that
is [[f +g|, [If|" and |g|, then take the square root:
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||f+g||2 =(f+g, f+g)

= JLF (0000 F () 9] o
]E[cos(x)+sin(x)]2 dx

-

V4

“cosz(x)+2005( )sin(x)+sin’ ]dx

-

T sin(2x0)] dx Because cos?(x)+sin®(x)=1
_J”[H (2 )] ‘ Lnd 2cos(x)sin(x):sin(2x)}

= X_cos(Zx)} {Because J‘sin(kx)dx:—&(kx)}
- 2 - k
= H—M}—{—E—M} [Substituting Limits]
= _7r
Taking the square root of || f +g| =27 gives |f +g| =27
We need to find |f|| and |9 :
[ £ =¢f. f)
= .[[cosz(x)} dx = 7«
-z By Result
Similarly we have
ol =(g. 9)
= I[sinz(x)] dx = =7
By Result
Taking the square root of these || f|| =7 and ||g|| =7 gives ||f||_ and ||g||_
respectively. Adding these
[+l =V +4z =2J=
Since |If +g|| =2z < ZJ__||f||+||g|\ therefore we have Minkowski Inequality.

(d) We normalize these vectors fand g by — and —— with f =cos(x), g=sin(x),

||f|| || gl

frl=7 and [g|=z
L_cos( )

- vz " ld V=

9. We use the given inner product (f, gn>=j: f (t)g, (t)dt.
Firstwe test f(x)=1 and g, (t)=sin(2nt):
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(f, gn>=Ioﬁlsin(2nt)dt
= {_%I = —Tlr][cos(fnﬂ)—gi(i)] = —%[1—1] =0

Hence f and g are orthogonal for n>1.
Now we test g, (t)=sin(2nt) and g, (t)=sin(2mt) where n=m:
(sin(2nt), sin(2mt)>:Ioﬂsin(Znt)Sin(th)dt =0
By Result

Hence the set {1, sin(2t), sin(4t), sin(6t),--} is orthogonal.

We need to normalize these vectors by using Proposition (4-7) which is

IfIf = (f, f)=j0”(1x1) dt

[; ==

w
wl

What is ||f| equal to?
Taking the square root of |[f|* = z gives || =</ . Similarly we find |g.
lol* = (g g)=j0”sin(2nt)xsin(2nt)dt
T

_["ain2 _
_J.O sin’(2nt)dt =

By Result

Taking the square root gives ||g| = \/% Normalizing these vectors gives
foo1 g sin(2nt) F _ { 1 2J
—=—and == =,|—sin(2nt Because =,|—
M- o~ Vo2 (20t) NI E

T T
) 1 2 . 2 . 2 .
The orthonormal set is { ——, ,[—sin(2t), ./—sin(4t), ,[—sin(6t),---}.
{rﬂ«/ﬂ()«/ﬁ()«/ﬁ()}

10. Clearly we have
(A, B)=tr(B'A)

[0 5 S S Sl oo
Similarly we can show that
(A, C)=0, (A, D)=0, (B, C)=0, (B, D)=0 and (C, D)=0

Hence all the matrices are orthogonal. What else do we need to prove?
Required to show that |A| =|B| =|C| =|D||=1. What is |A| equal to?

First we find ||A||2 and then take the square root:
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|AIF =(A, A)=tr(ATA)

(s o (5 o)

2 2fs ol 9o

Taking the square root gives |A|| 1. Similarly we have
8] =(B. B)=tr(B'B)

1]

(0 00 1 00
=tr =tr =0+1=1
[2 ol o5 3
Thus |B||=1. Similarly we have
[ =(c. c)=tr(c'C)

1]
(o o) o)l oo

Hence ||C|| =1 and similarly we can also show that ||D||=1. Since
|Al=]8]=[Ic| =[P =1
therefore the matrices are normalized so the set S = {A, B, C, D} is orthonormal.

11. We need to find (f (t), z(t)>:_[01 f (t)z(t)dt where f (t)=100sin(100t) and
z(t) =cos(10t). Substituting these and using the given hint we have
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(f(t). 2(t))= ], [100sin(100t)cos (10t) ] dt

= 100[:[sin (100t )cos(10t)] dt

Because sin(100t)cos(10t)

=50[ [sin (110t)+sin (90t) ] dt.

1
_ 50{_ cos(110t) COS(QOt)} {Because [sin(kt)dt =-
0

110 90

B _5060081(1101 2 COS9(090)} _(110 ’ %) ]

-0.999 -0.448 1 1
=-50 + - +—
q 110 90 } [110 90} j

=1.713

12. Need to prove Proposition (4-7) which claims:

= %[sin(lOOt +10t)+sin (100t —10t) |

cos(kt)

k

Every non-zero vector w in an inner product space V can be normalized by setting

ue W
[wl
Proof.

: . w
Let w be a non-zero arbitrary vector in V and u =-—:. What do we need to prove?

[wi

Required to show that |u]|=1. We have

ul|= Wil L w [Writing 5:lx}
[wilf - Jliw y
1 L
= ] |w| [ By (4-2) part (c) which is [|ku]|= [K|Jul ]
1

=—|w|=1 {i > 0 therefore
| w]

i‘ ) i}
W]~ w]

Since the vector has length of 1 so every non-zero vector can be normalized.

13. Proof.
Since u and v are orthogonal so we have
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||u—v||2:(u—v, u—-v)
=(u, u)+(u, —Vv)+(-v, uy+(-v, —v)
-

=[u" = (u, V)= (v, u)+(v. v)

:||u||2—(u, v)—(v, u>+||v||2 [Because u and v are orthogonal
=0 =0

=[ull" + M

14. (a) Vectors u and v are orthonormal therefore we have (u, v)=0, |u[=1 and

IV[[=1. To find |Ju+v| we first determine |u+v|’ and then take the square root. We can
use Pythagoras Theorem (4-5) because u and v are orthogonal:
Jus vl =Juf + v =1+1=2
Thus taking the square root of both sides gives |u+v|=+2.
(b) By using the result of question 13 above we have |u—v||= J2.

15. (a) We need to prove |u, +u, +u, +---+un||2 = ||u1||2 +||u2||2 +||u3||2 +m+||un||2 :
How?

By using mathematical induction.

Proof.

Clearly the result holds for n=2 because by theorem (4-5) we have

Ju -, [ = o+ u
Assume the result is true for n=k, that is
Ju -, g e u [ = o g+ ) ()
We need to prove the result for n=k +1, that is we are required to prove
Ju -, g e U = o | g+l
Examining the Left Hand Side we have

Juy U, + Uy -+ Uy U = (U U, U Uy ) U ’

:H(u1+u2+u3+...+uk)H2+||uk+1||2 [By (4-5)]

= ol g+ s+ |+ o

By ()
This completes the proof.
| |
(b) We are given that {f,, f,,f,, ---, f,} be an orthonormal set of vectors in C[0, 7].
Since {fl, f,,f5, -, fn} is an orthonormal set so the vectors are orthogonal. Applying

Pythagoras (4-5) we have
[£, 46, 8 et =7+ +IE] -+ [

Each of these vectors are normalized so they have a length of 1. Hence
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R e I 1S A e LA RS A

=1+1+1+---+1=n

n copies

Taking the square root gives |f, +f, +f, +---+f,[ =/n .

16. We need to prove that the vectors {u,, u,, U,, ---, u,} are orthogonal <
{ku,, ku,, kus, ---, ku,} are orthogonal.
Proof.

(:>) Let u; and u; be arbitrary vectors where i = j. Consider the inner product of
<kiui, kjuj>:
<k.u. kjuj>=kikj<ui, uj> [ Because by (4-1) (c) (ku, v)=k{u, v)]

=kk; (0)=0 | Because u; and u; are orthogonal |
Hence the arbitrary vectors ku; and k;u; are orthogonal because their inner product is
zero. Since kiu; and k;u; were arbitrary vectors so
{k1u1’ kzuz’ ksus’ Ty knun}
is an orthogonal set of vectors.
(<) . We can assume {k,u,, k,u,, ks, ---, kou,} are a set of orthogonal vectors.

Consider two arbitrary vectors in this set ku, and k;u; where i = j. We have
<kiui, kjuj>:0. Expanding this
(ku;, ku;)=kk; (u;, u;)=0
We are given that the scalars k are non-zero therefore
kik;(u;, uj)=0 = (u, u;)=0 = u, and u; are orthogonal
This completes our proof.

If one of the scalars is zero, k; =0 say. We have k;u; =O which means that
k;u; is orthogonal to all the vectors in {ku,, k,u,, kus, ---, ku,}
However the inner product of this vector k;u; =O and kju; is zero, that is
<k.u. kjuj>=kikj <ui, uj>:0 because k; =0

i
But <ui, uj> # 0 which means the vectors u; and u; are not orthogonal. Hence if one
of the scalars is zero then the orthogonal set

{kuy, ku,, kus, -+, ku } = {u, u,, ug, -+, u,} areorthogonal

17. We are required to prove |u+v] < |u+|v|.
Proof.


acauser3
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u+vl| =(u+v, u+v
2

(u, u+v)+(v, u+v)
(u, w)+(u, v)+{v, u)+(v, v)

Jul”+ 24w, v)+ [V

< ||u||2 + 2Ku, v>‘ + ||v||2 [Because X < |x|]

<l +2[Jufliv]+ v | Using CSI (4-3) [(u, v)|<u]lv] ]
2

= (Jjull+[[v1])

We have
2
o+ v < (] +1¥])
[+ v < uf|+||v] [Taking Square Roots]
This was our required inequality.
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