
Complete Solutions to Exercises 5.5    1 

Complete Solutions to Exercises 5.5 

1. Read off the coefficients of x, y, z and w. The coefficients of x are the entries in the first

column of standard matrix A, coefficients of y are the entries in the second column of

standard matrix A, etc.

(a) 
1 1

2 2

 
  
 

A (b) 
1 1

1 1

 
  

  
A (c) 

2 3

1 5

 
  

 
A

(d) 

1 1 1

1 1 1

2 1 1

 
 

   
  

A (e) 

2 1 0

4 1 3

7 1 1

 
 

  
   

A

(f) 

1 1 1 3

1 3 7 1

9 5 6 12

1 0 0 0

  
 
   

 
 
 

A (g) 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
  
 
 
 

A O

2. We use the standard basis 1 2 3, , , , ne e e e in each case because we need to find the 

standard matrix. 

(a) We are given 
2

x x y
T

y x y

     
    

    
. Applying this linear transformation to 1

1

0

 
  
 

e  and 

2

0

1

 
  
 

e  gives 

 
 1

1 01 1

1 2 00 1
T T

      
             

e

 
 2

0 10 1

0 2 11 2
T T

      
             

e

What is the standard matrix A equal to in this case? 

By Proposition (5-17) we have     1 2T TA e e  which is
1 1

1 2

 
  
 

A . 

(b) The given transformation is 
3 2

5

x x y
T

y y x

     
    

    
. Applying this linear transformation to 

1

1

0

 
  
 

e  and 2

0

1

 
  
 

e  gives 

 
   

 1

3 1 2 01 3

5 0 10 1
T T

     
       

       
e

 
   

 2

3 0 2 10 2

5 1 01 5
T T

      
       

      
e

By Proposition (5-17) we have     1 2T TA e e  which is
3 2

1 5

 
  

 
A . 
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(c) We are given the transformation 

x
x y z

T y
x y z

z

  
    

         
  

. The standard basis in 3  is 

1 2 3

1 0 0

0 , 1   and  0

0 0 1

     
     

       
     
     

e e e . Applying the given linear transformation to these vectors 

gives 

 

 

 

1

2

3

1
1

0
1

0

0
1

1
1

0

0
1

0
1

1

T T

T T

T T

  
   

     
   

  

  
   

     
   

  

  
   

     
   

  

e

e

e

What is the standard matrix A equal to? 

By Proposition (5-17) we write these as the first, second and last columns of matrix A: 

      1 2 3T T TA e e e gives 
1 1 1

1 1 1

  
  
 

A

(d) We are given 

0

0

0

x

T y

z

    
    

    
    
    

. The standard basis in 3  is 

1 2 3

1 0 0

0 , 1   and  0

0 0 1

     
     

       
     
     

e e e

Applying the given linear transformation to these vectors gives 

 

 

 

1

2

3

1 0

0 0

0 0

0 0

1 0

0 0

0 0

0 0

1 0

T T

T T

T T

    
    

     
    
    

    
    

     
    
    

    
    

     
    
    

e

e

e

What is the standard matrix A equal to? 

By Proposition (5-17) we write these as the first, second and last columns of matrix A: 
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      1 2 3T T TA e e e  gives 

0 0 0

0 0 0

0 0 0

 
 

  
 
 

A O

(e) We are given the linear transformation 

3 5 6

2 7 5

0

x y zx

T x y zy

z

      
    

       
    
    

. Applying the given 

linear transformation to the standard basis for 3 which are  1 2 3, ,e e e : 

 

     

     

 

     

     

 

     

     

1

2

3

1 3 1 5 0 6 0 3

0 2 1 7 0 5 0 2

0 0 0

0 3 0 5 1 6 0 5

1 2 0 7 1 5 0 7

0 0 0

0 3 0 5 0 6 1

0 2 0 7 0 5 1

1 0

T T

T T

T T

         
      

            
     
     

         
      

           
     
     

     
   

       
   
   

e

e

e

6

5

0

  
  
  
 
 

What is the standard matrix A equal to? 

By Proposition (5-17) we write these as the first, second and last columns of matrix A: 

      1 2 3T T TA e e e  gives 

3 5 6

2 7 5

0 0 0

   
 

  
 
 

A

3. Since 2 3:T  so matrix A must be of size 3 by 2. Let

a b

c d

f g

 
 

  
 
 

A . We have 

1
1 1

2 1, 2, 3
0 0

3

a b a

T c d c a c f

f g f

     
         

               
          

     

4
0 0

5 4, 5, 6
1 1

6

a b b

T c d d b d g

f g g

     
         

               
          

     

Hence 

1 4

2 5

3 6

 
 

  
 
 

A . 

4. We have the basis   2
1, 1 , 1B x x   . Applying the linear transformation to these 

basis vectors and expressing the answers in terms of the  1,C x  axes:
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       1 1 0 0 1 0T x   

       1 1 1 1 1 0T x x x       

           
2 2

1 1 2 1 2 2 2 1 2T x x x x x


           

The matrix A is given by 
0 1 2

0 0 2

  
  
 

A . Next we write 22 3 1x x  in terms of 

  2
1, 1 , 1B x x   : 

     
222 3 1 2 1 7 1 6 1x x x x      

Hence we have 

6
0 1 2 3

7
0 0 2 4

2

 
     

     
    

 

Using these results we have 

 22 3 1 3 4T x x x   

 2 31, , ,B x x x5. (a) We are given the bases and  21, ,C x x  for the transformation 

 T p p . Applying the given linear transformation to the vectors in basis 

 2 31, , ,B x x x we have 

 1 1 0T  

  1T x x 

   2 2 2T x x x


 

   3 3 23T x x x


 

We need to write each of these above as the coordinates of the basis  21, ,C x x : 

       

       

       

       

2

2

2 2

3 2 2

1 0 1   gives 0  0 and 0 

1 1  gives  1, 0  and 0 

2 1   gives  0, 2  and 0

3 1   gives  0, 0  and 3

T a b x c x a b c

T x d e x f x d e f

T x x g h x i x g h i

T x x j k x l x j k l

      

      

      

      

What is our matrix A equal to? 

        2 31

0 1 0 0

0 0 2 0

0 0 0 3

C C C C

T T x T x T x

a d g j

b e h k

c f i l

              

   
   

    
   
   

A
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Using this matrix A to find  T p  where 2 31 3 7 2x x x    p  we have coefficients of the 

basis  2 31, , ,B x x x and are 1, 3, 7 and 2   respectively therefore 

 

1

3

7

2

B

 
 
 
 
 
 

p

   

1
0 1 0 0 3

3
0 0 2 0 14

7
0 0 0 3 6

2

BC
T

 
    
                     

 

p A p

The entries 3, 14  and 6  in the Right Hand column vector are the coefficients of the basis 

 21, ,C x x which means that we have 

       2 3 2 21 3 7 2 3 1 14 6 3 14 6T x x x x x x x         

Thus  2 3 21 3 7 2 3 14 6T x x x x x       . You may check this by differentiating the given 

function, that is  2 3 21 3 7 2 3 14 6x x x x x


       . 

 2 31, , ,B x x x  2 , , 1C x x(b) We are given the bases and  for the transformation 

 T p p . Applying the given linear transformation to the vectors in basis 

 2 31, , ,B x x x which is identical to part (a) so we have the same answers:

 1 1 0T   ,   1T x x  ,    2 2 2T x x x


  and     3 3 23T x x x


 

We need to write each of these above as the coordinates of the basis  2 , , 1C x x : 

       

       

       

       

2

2

2 2

3 2 2

1 0 1   gives  0  0 and 0 

1 1  gives  0, 0  and 1 

2 1   gives  0, 2  and 0

3 1   gives  3, 0  and 0

T a x b x c a b c

T x d x e x f d e f

T x x g x h x i g h i

T x x j x k x l j k l

      

      

      

      

What is our matrix A equal to? 

        2 31

0 0 0 3

0 0 2 0

0 1 0 0

C C C C

T T x T x T x

a d g j

b e h k

c f i l

              

   
   

    
   
   

A

As part (a) we have  

1

3

7

2

B

 
 
 
 
 
 

p . 
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1
0 0 0 3 6

3
0 0 2 0 14

7
0 1 0 0 3

2

BC
T

 
    

                 
    
 

p A p

The entries 6 , 14  and 3 in the Right Hand column vector are the coefficients of the basis 

 2 , , 1C x x which means that we have 

       2 3 2 21 3 7 2 6 14 3 1 6 14 3T x x x x x x x           

Thus  2 3 21 3 7 2 6 14 3T x x x x x        .  

 3 2, , , 1B x x x  21, ,C x x(c) We are given the  bases and  for the transformation 

 T p p . Applying the given linear transformation to the vectors in basis 

 3 2, , , 1B x x x we have 

   3 3 23T x x x


  ,    2 2 2T x x x


  ,   1T x x   and  1 1 0T    

We need to write each of these above as the coordinates of the basis  21, ,C x x : 

       

       

       

       

3 2 2

2 2

2

2

3 1   gives  0  0 and 3 

2 1  gives  0, 2  and 0 

1 1   gives  1, 0  and 0

1 0 1   gives  0, 0  and 0

T x x a b x c x a b c

T x x d e x f x d e f

T x g h x i x g h i

T j k x l x j k l

      

      

      

      

What is our matrix A equal to? 

        3 2 1

0 0 1 0

0 2 0 0

3 0 0 0

C CC C

T x T x T x T

a d g j

b e h k

c f i l

             

   
   

    
   
   

A

Using this matrix A to find  2 31 3 7 2T x x x    we have coefficients of the basis

 3 2  , , , 1B x x x are 2, 7, 3 and 1    respectively therefore  

2

7

3

1

B

 
 
 
 
 
 

p . 

   

2
0 0 1 0 3

7
0 2 0 0 14

3
3 0 0 0 6

1

BC
T

 
    

              
       

 

p A p

The entries 3, 14  and 6  in the Right Hand column vector are the coefficients of the basis 

 21, ,C x x which means that we have 

       2 3 2 21 3 7 2 3 1 14 6 3 14 6T x x x x x x x         
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Thus  2 3 21 3 7 2 3 14 6T x x x x x       .

Note that in each case we have a different matrix. This means that even changing the order of 

the basis vectors gives a different matrix. 

6. We are given 
x x y

T
y x y

     
    

    
 and we need to find the transformation matrix A with 

respect to the basis 1 2

1 0
,

2 1
B

    
      

    
v v : 

 1

1 1 2 3

2 1 2 1
T T

       
        

       
v

 
 2

0 10 1

0 11 1
T T

      
       

       
v

We need to write these in terms of the basis vectors 1 2

1 0
,

2 1
B

    
      

    
v v : 

 1 1 2

3 1 0

1 2 1
T a b a b

     
         

      
v v v (*) 

 2 1 2

1 1 0

1 2 1
T c d c d

     
         

     
v v v (**) 

Solving (*) yields 

3
 gives  3  and  7

2 1

a
a b

a b

 
 

   

Solving (**) yields 

1
 gives  1  and  3

2 1

c
c d

c d

  
   

  

The transformation matrix A is given by     1 2B B
T T       A v v  therefore 

3 1

7 3

a c

b d

   
    

   
A

By using this matrix we need to find 
3

1
T
   
  
  

. How? 

We need to write the vector 
3

1

 
 
 

 with respect to the basis 1 2

1 0
,

2 1
B

    
      

    
v v : 

1 2

3 1 0

1 2 1
k k

     
      

     

This gives 1 3k   and 2 7k   . Thus 

3 3 1 3 2

1 7 3 7 0
B

T
            

         
          

We have 
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1 2

3 1 0 2
2 0 2 0

1 2 1 4
T
          

              
         

v v

Working out this directly we have 
3 3 1 2

1 3 1 4
T
          

       
        

. 

7. First we apply the matrix A to the standard basis vectors 1

1

0

 
  
 

e  and 2

0

1

 
  
 

e : 

   

   

 

 1 1

cos 45 sin 45 cos 451 11

sin 45 cos 45 sin 450 12

         
         

        
v Ae

   

   

 

 2 2

cos 45 sin 45 sin 450 11

sin 45 cos 45 cos 451 12

           
         

        
v Ae

Our new basis is 1 2

1 11 1
,

1 12 2
B

     
      

    
v v . We need to write 

2

1

 
 
 

 in terms of this 

B  new basis. How? 

2
2 1 11 1 2 2 2

1 1 12 2
1

2 2 2

a b a b

a b
a b a b


  

     
       

        

Transposing these equations gives 

 2 2 1

2 (2)

3 2
3 2 2

2

a b

a b

a a

 

 

  

Substituting 
3 2 3

2 2
a   into (1) gives 

3 2 1
2 2

2 2
b     . 

Hence the coordinates of 
2

1

 
 
 

 under the new basis B is 
31

12

 
 
 

. This is illustrated below: 
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8. We are given the linear transformation 

3

x
x

T y
y

x y

 
    

     
     

. What do we need to find first? 

The transformation of the basis vectors  1T v and  2T v where 1 2

1 1
,

2 1

   
    
   

v v : 

 

 

 

 

1

2

1 1
1

2 2
2

1 3 2 7

1 1
1

1 1
1

1 3 1 4

T T

T T

    
      

          
        

    
      

          
        

v

v

What else do we need to find? 

We need to write each of these above vectors    1 2and  T Tv v as the coordinates of the 

basis 1 2 3

1 1 0

0 , 2 , 1

1 0 1

C

      
      

         
      

      

w w w : 

   

   

1 1 2 3

2 1 2 3

1 1 1 0

2 0 2 1 †

7 1 0 1

1 1 1 0

1 0 2 1 ††

4 1 0 1

T a b c a b c

T d e f d e f

       
       

              
       
       

       
       

              
       
       

v w w w

v w w w

How can we find the matrix A? 

1v2v

2e2e

1e

New axis in the 

direction of 1v  

New axis in the 

direction of 2v  
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By Proposition (5-18) we have     1 2C C
T T       A v v  which in this case is 

a d

b e

c f

 
 

  
 
 

A  because    1 2  and  
C C

a d

T b T e

c f

   
   

          
   
   

v v

How can we determine , , , ,a b c f ? 

We need to solve the 2 pairs of simultaneous equations (†) and (††) in the above. Consider 

the first pair (†): 

1 1 1 0 0

2 0 2 1 0 2 2

7 1 0 1 0

a b a b

a b c b c b c

a c a c

                
               
                       
                              

We have 

1
7 10 14

2 2   gives  ,  and 
3 3 3

7

a b

b c a b c

a c

   


      
  

Similarly we can find the solution of the other simultaneous equation (††): 

1 1 1 0 0

1 0 2 1 0 2 2

4 1 0 1 0

d e d e

d e f e f e f

d f d f

                
               
                       

                              

1

2 1   gives  1, 2  and  3

4

d e

e f d e f

d f

   


      
  

What is the matrix A equal to? 

    1 2

7 / 3 1

10 / 3 2

14 / 3 3
C C

a d

T T b e

c f

   
   

              
   
   

A v v

Remember    
BC

T   u A u so we have 

   

7 / 3 1

10 / 3 2

14 / 3 3
BC

T

 
 

      
 
 

u u (*) 

We need to find  T u  where
2

1

 
  
 

u . We first determine  
B

u  which means we have to

write the vector u in terms of the basis vectors 1 2

1 1
 and  

2 1

   
    
   

v v : 

1 2

1 1 2 2 1 2

1 2

2 1 1

21 2 1

k k
k k k k

k k

      
            

       
u v v

Thus we need to solve the simultaneous equations: 

1 2

1 2

1 2

2
 gives  1  and  3

2 1

k k
k k

k k
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Thus  
1

3B

 
  
 

u . Substituting this into (*) gives

 

7 / 3 1 2 / 3 2
1 1

10 / 3 2 8 / 3 8
3 3

14 / 3 3 13 / 3 13
C

T

     
      

                
      

     

u

We have 

 1 2 3

2 1
2 8 13

1 3

1 1 0 6 2
1 1

2 0 8 2 13 1 3 1
3 3

1 0 1 15 5

T
  

    
  

            
          

                
                    

w w w

As a check we can evaluate the transformation directly by using 

3

x
x

T y
y

x y

 
    

     
     

: 

 

2 2
2

1 1
1

2 3 1 5

T

    
      

         
        

Note that both our answers are identical. 

9. Applying the given linear transformation to the matrices in basis B we have

 1

1 0 1 0 1 0

0 0 0 0 0 0

T

T T
      

        
      

m

 2

0 1 0 1 0 0

0 0 0 0 1 0

T

T T
      

        
      

m

 3

0 0 0 0 0 1

1 0 1 0 0 0

T

T T
      

        
      

m

 4

0 0 0 0 0 0

0 1 0 1 0 1

T

T T
      

        
      

m

What else do we need to find? 

We need to write each of these above matrices        1 2 3 4, , and  T T T Tm m m m as the 

coordinates of the basis: 

1 2 3 4

1 0 0 1 0 0 0 0
, , ,

0 0 0 0 1 0 0 1
C

        
            

        
m m m m

We have 

 1

1 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 1
T a b c d

         
             
         

m

This gives 1, 0, 0  and 0a b c d    . Similarly we have 
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 2

0 0 1 0 0 1 0 0 0 0

1 0 0 0 0 0 1 0 0 1
T e f g h

         
             
         

m

This gives 0, 0, 1e f g    and 0h  . In the same manner we have 

 3

0 1 1 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 1
T i j k l

         
             
         

m

This yields 0, 1, 0 and 0i j k l    . Evaluating 

 4

0 0 1 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 1
T m n p q

         
             
         

m

Thus 0, 0, 0  and 1m n p q    .  

How can we find the transformation  matrix A? 

By Proposition (5.31) we have  

        1 2 3 4C C C C
T T T T               A m m m m

which in this case is 

a e i m

b f j n

c g k p

d h l q

 
 
 
 
 
 

A . Why? 

Because        1 2 3 4, , ,
C C C C

a e i m

b f j n
T T T T

c g k p

d h l q

       
       
                               
       
       

m m m m . 

We can substitute the above values of a, b, c, d, 

What is the matrix A equal to? 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

a e i m

b f j n

c g k p

d h l q

   
   
    
   
   
   

A

This means that    
BC

T   X A X we have 

   

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

BC
T

 
 
     
 
 

X X

We need to evaluate 
1 2

3 4
T
  
  
  

by using the matrix A above. Let 
1 2

3 4

 
  
 

X

1 2 1 0 0 1 0 0 0 0

3 4 0 0 0 0 1 0 0 1
a b c d

         
            

         
(*) 

These are not the same a, b, c and d values found above. From this (*) we have 

1, 2, 3  and  4a b c d   

What is  
B

X  equal to?

acauser3
스탬프
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1

2

3

4

B

a

b

c

d

   
   
    
   
   
   

X    

From the above we have    

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

BC
T

 
 
     
 
 

X X  and evaluating this Right Hand 

Side gives: 

 

1 0 0 0 1 1

0 0 1 0 2 3

0 1 0 0 3 2

0 0 0 1 4 4

C
T

    
    
            
    
    

X  

We have 

1 2 1 0 0 1 0 0 0 0
1 3 2 4

3 4 0 0 0 0 1 0 0 1

1 3

2 4

T
          

             
          

 
  
 

 

We can check this by evaluating the transformation directly: 

1 2 1 2 1 3

3 4 3 4 2 4

t

T
      

       
      

 

The matrix 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 
 
 
 
 
 

A  represents the transformation defined by   TT X X  with 

respect to the given basis. 

 

10. We are given the transformation :T V V  given by 

 T f f  

and we need to find the transformation matrix A with respect to the bases 

    sin , cosB x x  

The transformation of the basis vectors is given by 

       sin sin cosT x x x   

       cos cos sinT x x x    

We need to write each of these above as the coordinates of the basis     sin , cosB x x : 

        

        

sin cos sin cos   gives 0  and  1

cos sin sin cos   gives  1  and  0

T x x a x b x a b

T x x c x d x c d

    

      
 

What is our matrix A equal to? 
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0 1

1 0

a c

b d

   
    
   

A

(a)Using this matrix A to find  T g  where    5sin 2cosx x g  we have  
5

2B

 
  
 

g

because these are the coefficients of  sin x  and  cos x  respectively:

   
0 1 5 2

1 0 2 5BB
T

     
         

    
g A g

The entries 2  and 5 in the Right Hand column vector are the coefficients of the basis 

    sin , cosB x x which means that we have 

       5sin 2cos 2sin 5cosT x x x x     

(b) In this case we have    sin cosm x n x g  so we can write the coefficients of  sin x

and  cos x  as  
B

m

n

 
  
 

g . We have 

   
0 1

1 0BB

m n
T

n m

     
         

    
g A g

The entries n  and m in the Right Hand column vector are the coefficients of the basis 

    sin , cosB x x which means that we have 

        sin cos sin cosT m x n x n x m x   

11. We are given that    3T x p p  and we need to find the transformation matrix A with

respect to the basis  21, ,B x x . The transformation of these basis vectors is given by 

 1 1T 

  3T x x 

   
22 23 6 9T x x x x     [Expanding] 

We need to write each of these as the coordinates of the basis  21, ,B x x : 

       21 1 1   gives  1, 0T a b x c x a b c      

       23 1 gives 3, 1 and 0T x x e f x g x e f g         

       2 2 26 9 1  gives  9, 6 and  1T x x x h i x j x h i j        

We have  

1

1 0

0
B

a

T b

c

   
   

       
   
   

,   

3

1

0
B

e

T x f

g

   
   

       
   
   

and  2

9

6

1
B

h

T x i

j

   
          
   
   

. 

Our transformation matrix A is given by 

      2

1 3 9

1 0 1 6

0 0 1
B B B

T T x T x

 
            
 
 

A
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The coordinates of the given vector 2q nx mx  p  with respect to the basis  21, ,B x x

is 

 
B

q

n

m

 
 

  
 
 

p

Thus we have 

 

1 3 9 3 9

0 1 6 6

0 0 1
B

q q n m

T n n m

m m

     
    

         
    
    

p

The entries in the Right Hand Column vector 3 9 , 6 and q n m n m m    are the 

coefficients of 1, x and 2x because  21, ,B x x . 

   

 

2

23 9 6

T T q nx mx

q n m n m x mx

  

     

p

Evaluating this transformation directly gives 

     

 

 

22

2

2

2

3 3

3 6 9

3 6 9

9 3 6

T q nx mx q n x m x

q nx n m x x

q nx n mx mx m

q m n n m x mx

      

     

     

     

This is identical to the above therefore matrix A is the transformation matrix of the given 

transformation. 

12. We are given the transformation :T V V  given by

 T f f

and we need to find the transformation matrix A with respect to the basis 

    sin , cos , xB x x e

The transformation of the basis vectors is given by 

       sin sin cosT x x x 

       cos cos sinT x x x  

 x xT e e

We need to write each of these above as the coordinates of the basis

    sin , cos , xB x x e : 

        

        

     

sin cos sin cos  gives 0, 1  and 0 

cos sin sin cos  gives  1, 0  and 0

sin cos  gives  0  and  1

x

x

x x x

T x x a x b x ce a b c

T x x m x n x le m n l

T e e p x q x re p q r

      

        

      

What is our matrix A equal to? 
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0 1 0

1 0 0

0 0 1

a m p

b n q

c l r

   
   

    
   
   

A

(a)Using this matrix A to find  T g  where    sin 4cos 2 xx x e   g we have 

 

1

4

2
B

 
 


 
  

g because these are the coefficients of  sin x ,  cos x  and xe : 

   

0 1 0 41

1 0 0 14

0 0 1 22
BB

T

     
    

          
        

g A g

The entries 4, 1   and 2  in the Right Hand column vector are the coefficients of 

   sin , cos   and  xx x e respectively because the basis     sin , cos , xB x x e which 

means that we have 

        sin 4cos 2 4sin cos 2x xT x x e x x e      

(ii) In this case we have    sin cos xm x n x pe  g so we can write the coefficients of 

   sin , cos   and  xx x e as  
B

m

n

p

 
 


 
 
 

g . We have 

   

0 1 0

1 0 0

0 0 1
BB

nm

T mn

pp

     
    

         
    
    

g A g

The entries n , m and p in the Right Hand column vector are the coefficients of the basis 

    sin , cos , xB x x e which means that we have 

        sin cos sin cosx xT m x n x pe n x m x pe     

In general if we apply the transformation directly we have 

     

   

sin cos

cos sin

x

x

T m x n x pe

m x n x pe

    

  

g

This is identical to the above result achieved by using the transformation matrix A. Thus the 

matrix A represents the differential transformation. 

13. We need to find the matrix A which represents

 T f f where f is the derivative of f 

with respect to the bases  2 2 2 2, ,x x xB e xe x e . 

The transformation of the basis vectors is given by 

   2 2 22x x xT e e e


 

   2 2 22x x x xT xe xe e xe


  

acauser3
스탬프



Complete Solutions to Exercises 5.5    17 
 

   2 2 2 2 2 2 22 2x x x xT x e x e xe x e


    

We need to write each of these above as the coordinates of the basis  2 2 2 2, ,x x xB e xe x e : 

 2 2 2 2 2 22   gives  2, 0  and  0x x x x xT e e ae bxe cx e a b c        

  2 2 2 2 2 22   gives  1, 2  and  0x x x x x xT xe e xe de fxe gx e d f g         

 2 2 2 2 2 2 2 2 22 2   gives  0, 2  and  2x x x x x xT x e xe x e he ixe jx e h i j         

We have  

 2

2

0

0

x

B
T e

 
      
 
 

,   
1

2

0

x

B
T xe

 
      
 
 

 and  2 2

0

2

2

x

B
T x e

 
      
 
 

 

What is our matrix A equal to? 

2 1 0

0 2 2

0 0 2

 
 

  
 
 

A  

Next by using this matrix we need to find  2 2 2 2x x xT ae bxe cx e  . First we write 

2 2 2 2x x xae bxe cx e   in terms of the basis vectors  2 2 2 2, ,x x xB e xe x e . Clearly we have  

2 2 2 2x x x

B

a

ae bxe cx e b

c

 
 

      
 
 

        

Thus 

 2 2 2 2

2 1 0 2

0 2 2 2 2

0 0 2 2

x x x

B

a a b

T ae bxe cx e b b c

c c

    
              
    
    

 

The entries in the Right Hand column vector are the coefficients of 2 2 2 2,   and  x x xe xe x e : 

     2 2 2 2 2 2 2 22 2 2 2x x x x x xT ae bxe cx e a b e b c xe cx e        

14. Since V is of dimension n so let  1 2, , , nB  b b b  be a basis for V. Applying any 

identity transformation to these basis vectors gives: 

   1 1 1 21 0 0 nT     b b b b b  

   2 2 1 20 1 0 nT     b b b b b  

 

   2 1 20 0 1n nT     b b b b b  

Writing the transformation matrix 

1

1

0

0

 
 

  
 
 

A I  

 

 




