
Hints and Answers

SECTION 1-3

2. a. α(t) = (t − sin t, 1 − cos t); see Fig. 1-7. Singular points: t = 2πn,
where n is any integer.

7. b. Apply the mean value theorem to each of the functions x, y, z to prove
that the vector (α(t + h) − α(t + k))/(h − k) converges to the vector
α′(t) as h, k → 0. Since α′(t) �= 0, the line determined by α(t + h),
α(t + k) converges to the line determined by α′(t).

8. By the definition of integral, given ε > 0, there exists a δ′ > 0 such that
if |P | < δ′, then∣∣∣∣

(∫ b

a

|α′(t)|dt

)
−
∑

(ti − ti−1)|α′(ti)|
∣∣∣∣ < ε

2
.

On the other hand, sinceα′ is uniformly continuous in [a, b], given ε > 0,
there exists δ′′ > 0 such that if t, s ∈ [a, b] with |t − s| < δ′′, then

|α′(t) − α′(s)| < ε/2(b − a).

Set δ = min(δ′, δ′′). Then if |P | < δ, we obtain, by using the mean value
theorem for vector functions,∣∣∣∣∑ |α(ti−1) − α(ti)| −

∑
(ti−1 − ti)|α′(ti)|

∣∣∣∣
≤
∣∣∣∣∑(ti−1 − ti) sup

si

|α′(si)| −
∑

(ti−1 − ti)|α′(ti)|
∣∣∣∣

≤
∣∣∣∣∑(ti−1 − ti) sup

si

|α′(si) − α′(ti)|
∣∣∣∣ ≤ ε

2
,

478
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where ti−1 ≤ si ≤ ti . Together with the above, this gives the required
inequality.

SECTION 1-4

2. Let the points p0 = (x0, y0, z0) and p = (x, y, z) belong to the plane P .
Then ax0 + by0 + cz0 + d = 0 = ax + by + cz + d . Thus, a(x − x0) +
b(y − y0) + c(z − z0) = 0. Since the vector (x − x0, y − y0, z − z0) is
parallel to P , the vector (a, b, c) is normal to P . Given a point p =
(x, y, z) ∈ P , the distance ρ from the plane P to the origin O is given
by ρ = |p| cos θ = (p · v)/|v|, where θ is the angle of Op with the
normal vector v. Since p · v = −d ,

ρ = p · v
|v| = − d

|v| .

3. This is the angle of their normal vectors.

4. Two planes are parallel if and only if their normal vectors are parallel.

6. v1 and v2 are both perpendicular to the line of intersection. Thus, v1 ∧ v2

is parallel to this line.

7. A plane and a line are parallel when a normal vector to the plane is
perpendicular to the direction of the line.

8. The direction of the common perpendicular to the given lines is the direc-
tion of u ∧ v. The distance between these lines is obtained by projecting
the vector r = (x0 − x1, y0 − y1, z0 − z1) onto the common perpendicu-
lar. Such a projection is clearly the inner product of r with the unit vector
(u ∧ v)/|u ∧ v|.

SECTION 1-5

2. Use the fact that α′ = t , α′′ = kn, α′′′ = kn′ + k′n = −k2t + k′n − kτb.

4. Differentiate α(s) + λ(s)n(s) = const., obtaining

(1 − λk)t + λ′n − λτb = 0.

It follows that τ = 0 (the curve is contained in a plane) and that λ =
const. = 1/k.

7. a. Parametrize α by arc length.

b. Parametrize α by arc length s. The normal lines at s1 and s2 are

β1(t) = α(s1) + tn(s1), β2(τ ) = α(s2) + τn(s2), t ∈ R, τ ∈ R,
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respectively. Their point of intersection will be given by values of t

and τ such that

α(s2) − α(s1)

s2 − s1
= tn(s1) − τn(s2)

s2 − s1
.

Take the inner product of the above with α′(s1) to obtain 1 =
(− lim τ)s2→s1 · 〈α′(s1), n

′(s1)〉. It follows that τ converges to 1/k

as s2 → s1.

13. To prove that the condition is necessary, differentiate three times
|α(s)|2 = const., obtaining α(s) = −Rn + R′Tb. For the sufficiency,
differentiate β(s) = α(s) + Rn − R′Tb, obtaining

β ′(s) = t + R(−kt − τb) + R′n − (TR′)′b − Rn = −(R′τ + (TR′)′)b.

On the other hand, by differentiating R2 + (TR′)2 = const., one obtains

0 = 2RR′ + 2(TR′)(TR′) = 2R′

τ
(Rτ + (TR′)′),

since k′ �= 0 and τ �= 0. Hence, β(s) is a constant p0, and

|α(s) − p0|2 = R2 + (TR′)2 = const.

15. Since b′ = τn is known, |τ | = |b′|. Then, up to a sign, n is determined.
Since t = n ∧ b and the curvature is positive and given by t ′ = kn, the
curvature can also be determined.

16. First show that

n ∧ n′ · n′′

|n′|2
=

(
k

τ

)′

(
k

τ

)2

+ 1

= a(s).

Thus,
∫

a(s) ds = arc tan(k/τ); hence, k/τ can be determined; since
k is positive, this also gives the sign of τ . Furthermore, |n′|2 =
| − kt − τb|2 = k2 + τ 2 is also known. Together with k/τ , this suffices
to determine k2 and τ 2.

17. a. Let a be the unit vector of the fixed direction and let θ be the
constant angle. Then t · a = cos θ = const., which differentiated
gives n · a = 0. Thus, a = t cos θ + b sin θ , which differentiated
gives k cos θ + τ sin θ = 0, or k/τ = − tan θ = const. Conversely,
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if k/τ = const. = − tan θ = −(sin θ/ cos θ), we can retrace our
steps, obtaining that t cos θ + b sin θ is a constant vector a. Thus,
t · a = cos θ = const.

b. From the argument of part a, it follows immediately that t · a = const.
implies that n · a = 0; the last condition means that n is parallel to
a plane normal to a. Conversely, if n · a = 0, then (dt/ds) · a = 0;
hence, t · a = const.

c. From the argument of part a, it follows that t · a = const. implies that
b · a = const. Conversely, if b · a = const., by differentiation we find
that n · a = 0.

18. a. Parametrize α by arc length s and differentiate ᾱ = α + rn with
respect to s, obtaining

dᾱ

ds
= (1 − rk)t + r ′n − rτb.

Since dᾱ/ds is tangent to ᾱ, (dᾱ/ds) · n = 0; hence, r ′ = 0.

b. Parametrize α by arc length s, and denote by s̄ and t̄ the arc length
and the unit tangent vector of ᾱ. Since dt̄/ds = (dt̄/ds̄)(ds̄/ds), we
obtain that

d

ds
(t · t̄ ) = t · dt̄

ds
+ dt

ds
· t̄ = 0;

hence, t · t̄ = const. = cos θ . Thus, by using that ᾱ = α + rn,
we have

cos θ = t̄ · t = dᾱ

ds

ds

ds̄
· t = ds

ds̄
(1 − rk),

| sin θ | = |t̄ ∧ t | =
∣∣∣∣ds

ds̄
((t + rn′) ∧ t

∣∣∣∣ =
∣∣∣∣ds

ds̄
rτ

∣∣∣∣ .
From these two relations, it follows that

1 − rk

rτ
= const. = B

r
.

Thus, setting r = A, we finally obtain that Ak + Bτ = 1.
Conversely, let this last relation hold, set A = r , and define

ᾱ = α + rn. Then, by again using the relation, we obtain

dᾱ

ds
= (1 − rk)t − rτb = τ(Bt − rb).

Thus, a unit vector t̄ of ᾱ is (Bt − rb)/
√

B2 + r2 = t̄ . It follows that
dt̄/ds = ((Bk − rτ )/

√
B2 + r2)n. Therefore, n̄(s) = ±n(s) and the

normal lines of ᾱ and α at s agree. Thus, α is a Bertrand curve.
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c. Assume the existence of two distinct Bertrand mates ᾱ = α + r̄n,
α̃ = α + r̃n. By part b there exist constants c1 and c2 so that
1 − r̄k = c1(r̄τ ), 1 − r̄k = c2(r̄τ ). Clearly, c1 �= c2. Differentiating
these expressions, we obtain k′ = τ ′c1, k′ = τ ′c2, respectively. This
implies that k′ = τ ′ = 0. Using the uniqueness part of the fundamen-
tal theorem of the local theory of curves, it is easy to see that the
circular helix is the only such curve.

SECTION 1-6

1. Assume that s = 0, and consider the canonical form around s = 0. By
condition 1, P must be of the form z = cy, or y = 0. The plane y = 0
is the rectifying plane, which does not satisfy condition 2. Observe now
that if |s| is sufficiently small, y(s) > 0, and z(s) has the same sign as s.
By condition 2, c = z/y is simultaneously positive and negative. Thus,
P is the plane z = 0.

2. a. Consider the canonical form of α(s) = (x(s), y(s), z(s)) in a neigh-
borhood of s = 0. Let ax + by + cz = 0 be the plane that passes
through α(0), α(0 + h1), α(0 + h2). Define a function F(s) =
ax(s) + by(s) + cz(s) and notice that F(0) = F(h1) = F(h2) = 0.
Use the canonical form to show that F ′(0) = a, F ′′(0) = bk. Use
the mean value theorem (twice) to show that as h1, h2 → 0, then
a → 0 and b → 0. Thus, as h1, h2 → 0 the plane ax + by + cz = 0
approaches the plane z = 0, that is, the osculating plane.

SECTION 1-7

1. No. Use the isoperimetric inequality.

2. Let S1 be a circle such that AB is a chord of S1 and one of the two arcs
α and β determined by A and B on S1, say α, has length l. Consider the
piecewise C1 closed curve (see Remark 2 after Theorem 1) formed by
β and C. Let β be fixed and C vary in the family of all curves joining
A to B with length l. By the isoperimetric inequality for piecewise C1

curves, the curve of the family that bounds the largest area is S1. Since
β is fixed, the arc of circle α is the solution to our problem.

4. Choose coordinates such that the center O is at p and the x and y

axes are directed along the tangent and normal vectors at p, respec-
tively. Parametrize C by arc length, α(s) = (x(s), y(s)), and assume
that α(0) = p. Consider the (finite) Taylor’s expansion

α(s) = α(0) + α′(0)s + α′′(0)
s2

2
+ R,

806995_.pdf   498 10/4/2016   12:01:22 PM



Hints and Answers 483

where lims→0 R/s2 = 0. Let k be the curvature of α at s = 0, and obtain

x(s) = s + Rx, y(s) = ±ks2

2
+ Ry,

where R = (Rx, Ry) and the sign depends on the orientation of α. Thus,

|k| = lim
s→0

2|y(s)|
s2

= lim
d→0

2h

d2
.

5. Let O be the center of the disk D. Shrink the boundary of D through a
family of concentric circles until it meets the curve C at a point p. Use
Exercise 4 to show that the curvature k of C at p satisfies |k| ≥ 1/r .

8. Since α is simple, we have, by the theorem of turning tangents,

∫ t

0

k(s) ds = θ(l) − θ(0) = 2π.

Since k(s) ≤ c, we obtain

2π =
∫ l

0

k(s) ds ≤ c

∫ l

0

ds = cl.

9. We first observe that the intersection of convex sets is a convex set.
Since the curve is convex, each tangent line determines a half-plane that
contains the curve. The intersection all such half-planes is a convex set
K ′ which contains the set K bounded by the curve. Also K ′ ⊂ K , for if
q ′ ⊂ K ′, q ′ �∈ K , the segment q ′p′, q ′ ∈ K ′, p′ ∈ K ⊂ K ′ is contained
in K ′ by convexity, and meets the curve. This is easily seen to yield a
contradiction.

11. Observe that the area bounded by H is greater than or equal to the
area bounded by C and that the length of H is smaller than or equal
to the length of C. Expand H through a family of curves parallel to H

(Exercise 6) until its length reaches the length of C. Since the area either
remains the same or has been further increased in this process, we obtain
a convex curve H ′ with the same length as C but bounding an area greater
than or equal to the area of C.

12.
M1 =

∫ 2π

0

(∫ 1/2

0

dp

)
dθ = π,

M2 =
∫ 2π

0

(∫ 1

0

dp

)
dθ = 2π.

(See Fig. 1-40.) Thus, M1/M2 = 1
2
.
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SECTION 2-2

5. Yes.

11. b. To see that x is one-to-one, observe that from z one obtains ±u. Since
cosh v > 0, the sign of u is the same as the sign of x. Thus, sinh v

(and hence v) is determined.

13. x(u, v) = (sinh u cos v, sinh u sin v, cosh v).

15. Eliminate t in the equations x/a = y/t = −(z − t)/t of the line joining
p(t) = (0, 0, t) to q(t) = (a, t, 0).

17. c. Extend Prop. 3 for plane curves and apply the argument of Example 5.

18. For the first part, use the inverse function theorem. To determine
F , set u = ρ2, v = tan ϕ, w = tan2 θ . Write x = f (ρ, θ) cos ϕ, y =
f (ρ, θ) sin ϕ, where f is to be determined. Then

x2 + y2 + z2 = f 2 + z2 = ρ2,
f 2

z2
= tan2 θ.

It follows that f = ρ sin θ , z = ρ cos θ . Therefore,

F(u, v, w) =
( √

uw√
(1 + w)(1 + v2)

,
v
√

uw√
(1 + w)(1 + v2)

,

√
u√

1 + w

)
.

19. No. For C, observe that no neighborhood in R2 of a point in the vertical
arc can be written as the graph of a differentiable function. The same
argument applies to S.

SECTION 2-3

1. Since A2 = identity, A = A−1.

5. d is the restriction to S of a function d: R3 → R:

d(x, y, z) = {(x − x0)
2 + (y − y0)

2 + (z − z0)
2}1/2,

(x, y, z) �= (x0, y0, z0).

8. If p = (x, y, z), F(p) lies in the intersection with H of the line t →
(tx, ty, z), t > 0. Thus,

F(p) =
( √

1 + z2√
x2 + y2

x,

√
1 + z2√
x2 + y2

y, z

)
.

Let U be R3 minus the z axis. Then F : U ⊂ R3 → R3 as defined above
is differentiable.
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13. If f is such a restriction, f is differentiable (Example 1). To prove
the converse, let x: U → R3 be a parametrization of S in p. As in
Prop. 1, extend x to F : U × R → R3. Let W be a neighborhood of
p in R3 on which F −1 is a diffeomorphism. Define g: W → R by
g(q) = f ◦ x ◦ π ◦ F −1(q), q ∈ W , where π : U × R → U is the natural
projection. Then g is differentiable, and the restriction g|W ∩ S = f .

16. F is differentiable in S2 − {N} as a composition of differentiable maps.
To prove that F is differentiable at N , consider the stereographic pro-
jection πS from the south pole S = (0, 0, −1) and set Q = πS ◦ F ◦
π−1

S : U ⊂ C → C (of course, we are identifying the plane z = 1 with
C). Show that πN ◦ π−1

S : C − {0} → C is given by πN ◦ π−1
S (ζ ) = 1/ζ̄ .

Conclude that

Q(ζ) = ζ n

ā0 + ā1ζ + · · · + ānζ n
;

hence, Q is differentiable at ζ = 0. Thus, F = π−1
S ◦ Q ◦ πS is differen-

tiable at N .

SECTION 2-4

1. Let α(t) = (x(t), y(t), z(t)) be a curve on the surface passing through
p0 = (x0, y0, z0) for t = 0. Thus, f (x(t), y(t), z(t)) = 0; hence,
fxx

′(0) + fyy
′(0) + fzz

′(0) = 0, where all derivatives are computed at
p0. This means that all tangent vectors at p0 are perpendicular to the
vector (fx, fy, fz), and hence the desired equation.

4. Denote by f ′ the derivative of f (y/x) with respect to t = y/x. Then
zx = f − (y/x)f ′, zy = f ′. Thus, the equation of the tangent plane at
(x0, y0) is z = x0f + (f − (y0/x0)f

′)(x − x0) + f ′(y − y0), where the
functions are computed at (x0, y0). It follows that if x = 0, y = 0, then
z = 0.

12. For the orthogonality, consider, for instance, the first two surfaces. Their
normals are parallel to the vectors (2x − a, 2y, 2z), (2x, 2y − b, 2z). In
the intersection of these surfaces, ax = by; introduce this relation in the
inner product of the above vectors to show that this inner product is zero.

13. a. Let α(t) be a curve on S with α(0) = p, α′(0) = w. Then

dfp(w) = d

dt
(〈α(t) − p0, α(t)− p0〉1/2)|t=0 = 〈w, p − p0〉

|p − p0| .

It follows that p is a critical point of f if and only if 〈w, p − p0〉 = 0
for all w ∈ Tp(S).
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14. a. f (t) is continuous in the interval (−∞, c), and limt→−∞ f (t) = 0,
limt→c,t<c f (t) = +∞. Thus, for some t1 ∈ (−∞, c), f (t1) = 1.
By similar arguments, we find real roots t2 ∈ (c, b), t3 ∈ (b, a).

b. The condition for the surfaces f (t1) = 1, f (t2) = 1 to be orthogonal
is

fx(t1)fx(t2) + fy(t1)fv(t2) + fz(t1)fz(t2) = 0.

This reduces to

x2

(a − t1)(a − t2)
+ y2

(b − t1)(b − t2)
+ z2

(c − t1)(c − t2)
= 0,

which follows from the fact that t1 �= t2 and f (t1) − f (t2) = 0.

17. Since every surface is locally the graph of a differentiable function, S1

is given by f (x, y, z) = 0 and S2 by g(x, y, z) = 0 in a neighborhood
of p; here 0 is a regular value of the differentiable functions f and g.
In this neighborhood of p, S1 ∩ S2 is given as the inverse image of (0, 0)

of the map F : R3 → R2: F(q) = (f (q), g(q)). Since S1 and S2 intersect
transversally, the normal vectors (fx, fy, fz) and (gx, gy, gz) are linearly
independent. Thus, (0, 0) is a regular value of F and S1 ∩ S2 is a regular
curve (cf. Exercise 17, Sec. 2-2).

20. The equation of the tangent plane at (x0, y0, z0) is

xx0

a2
+ yy0

b2
+ zz0

c2
= 1.

The line through O and perpendicular to the tangent plane is given by

xa2

x0
= yb2

y0
= zc2

z0
.

From the last expression, we obtain

x2a2

xx0
= y2b2

yy0
= z2c2

zz0
= a2x2 + b2y2 + c2z2

xx0 + yy0 + zz0
.

From the same expression, and taking into account the equation of the
ellipsoid, we obtain

xx0

x2
0/a

2
= yy0

y2
0/b

2
= zz0

z2
0/c

2
= xx0 + yy0 + zz0

1
.

Again from the same expression and using the equation of the tangent
plane, we obtain

x2

(x0x)/a2
= y2

(y0y)/b2
= z2

(z0z)/c2
= x2 + y2 + z2

1
.
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The right-hand sides of the three last equations are therefore equal, and
hence the asserted equation.

21. Imitate the proof of Prop. 9 of the appendix to Chap. 2.

22. Let r be the fixed line which is met by the normals of S and let p ∈ S.
The plane P1, which contains p and r , contains all the normals to S

at the points of P1 ∩ S. Consider a plane P2 passing through p and
perpendicular to r . Since the normal through p meets r , P2 is transversal
to Tp(S); hence, P2 ∩ S is a regular plane curve C in a neighborhood of
p (cf. Exercise 17, Sec. 2-4). Furthermore P1 ∩ P2 is perpendicular to
Tp(S) ∩ P2; hence, P1 ∩ P2 is normal to C. It follows that the normals of
C all pass through a fixed point q = r ∩ P2; hence, C is contained in a
circle (cf. Exercise 4, Sec. 1-5). Thus, every p ∈ S has a neighborhood
contained in some surface of revolution with axis r .

SECTION 2-5

8. Since ∂E/∂v = 0, E = E(u) is a function of u alone. Set ū = ∫ √
E du.

Similarly, G = G(v) is a function of v alone, and we can set v̄ =∫ √
G dv. Thus, ū and v̄ measure arc lengths along the coordinate curves,

whence Ē = Ḡ = 1, F̄ = cos θ .

9. Parametrize the generating curve by arc length.

SECTION 3-2

13. Since the osculating plane is normal to N , N ′ = τn and, therefore, τ 2 =
|N ′|2 = k2

1 cos2 θ + k2
2 sin2

θ , where θ is the angle of e1 with the tangent
to the curve. Since the direction is asymptotic, we obtain cos2 θ and
sin2

θ as functions of k1 and k2, which substituted in the expression
above yields τ 2 = −k1k2.

14. By setting λ1 = λ1N2 and λ2 = λ2N1 we have that

|λ1 − λ2| = k|〈n, N1〉N2 − 〈n, N2〉N1|
=
√

λ2
1 + λ2

2 − 2λ1λ2 cos θ.

On the other hand,

| sin θ | = |N1 ∧ N2| = |n ∧ (N1 ∧ N2)|
= |〈n, N2〉N1 − 〈n, N1〉N2|.

16. Intersect the torus by a plane containing its axis and use Exercise 15.
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18. Use the fact that if θ = 2π/m, then

σ(θ) = 1 + cos2 θ + · · · + cos2(m − 1)θ = m

2
,

which may be proved by observing that

σ(θ) = 1

4

(
v = m−1∑

v = −(m−1)

e2viθ + 2m + 1

)

and that the expression under the summation sign is the sum of a
geometric progression, which yields

sin(2mθ − θ)

sin θ
= −1.

19. a. Express t and h in the basis {e1, e2} given by the principal directions,
and compute 〈dN(t), h〉.

b. Differentiate cos θ = 〈N, n〉, use that dN(t) = −knt + τgh, and
observe that 〈N, b〉 = 〈h, N〉 = sin θ , where b is the binormal vector.

20. Let S1, S2, and S3 be the surfaces that pass through p. Show that the
geodesic torsions of C1 = S2 ∩ S3 relative to S2 and S3 are equal; it
will be denoted by τ1. Similarly, τ2 denotes the geodesic torsion of
C2 = S1 ∩ S3 and τ3 that of S1 ∩ S2. Use the definition of τg to show
that, since C1, C2, C3 are pairwise orthogonal, τ1 + τ2 = 0, τ2 + τ3 = 0,
τ3 + τ1 = 0. It follows that τ1 = τ2 = τ3 = 0.

SECTION 3-3

2. Asymptotic curves: u = const., v = const. Lines of curvature:

log(v +
√

v2 + c2)±u = const.

3. u + v = const. u − v = const.

6. a. By taking the line r as the z axis and a normal to r as the x axis, we
have that

z′ =
√

1 − x2

x
.

By setting x = sin θ , we obtain

z(θ) =
∫

cos2 θ

sin θ
dθ = log tan

θ

2
+ cos θ + C.

If z(π/2) = 0, then C = 0.
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8. a. The assertion is clearly true if x = x1 and x̄ = x̄1 are parametriza-
tions that satisfy the definition of contact. If x and x̄ are arbitrary,
observe that x = x1 ◦ h, where h is the change of coordinates. It
follows that the partial derivatives of f ◦ x = f ◦ x1 ◦ h are linear
combinations of the partial derivatives of f ◦ x1. Therefore, they
become zero with the latter ones.

b. Introduce parametrizations x(x, y) = (x, y, f (x, y)) and x̄(x, y) =
(x, y, f̄ (x, y)), and define a function h(x, y, z) = f (x, y)− z.
Observe that h ◦ x = 0 and h ◦ x̄ = f − f̄ . It follows from part a,
applied the function h, that f − f̄ has partial derivatives of order ≤
2 equal to zero at (0, 0).

d. Since contact of order ≥ 2 implies contact of order ≥ 1, the paraboloid
passes through p and is tangent to the surface at p. By taking the plane
Tp(S) as the xy plane, the equation of the paraboloid becomes

f̄ (x, y) = ax2 + 2bxy + cy2 + dx + ey.

Let z = f (x, y) be the representation of the surface in the plane
Tp(S). By using part b, we obtain that d = c = 0, a = 1

2
fxx , b = fxy ,

c = 1
2
fyy .

15. If there exists such an example, it may locally be written in the form
z = f (x, y), with f (0, 0) = 0, fx(0, 0) = fy(0, 0) = 0. The given con-
ditions require that f 2

xx + f 2
yy �= 0 at (0, 0) and that fxxfyy − f 2

xy = 0 if
and only if (x, y) = (0, 0).

By setting, tentatively, f (x, y) = α(x) + β(y) + xy, where α(x) is
a function of x alone and β(y) is a function of y alone, we verify that
αxx = cos x, βyy = cos y satisfy the conditions above. It follows that

f (x, y) = cos x + cos y + xy − 2

is such an example.

16. Take a sphere containing the surface and decrease its radius continuously.
Study the normal sections at the point (or points) where the sphere meets
the surface for the first time.

19. Show that the hyperboloid contains two one-parameter families of lines
which are necessarily the asymptotic lines. To find such families of lines,
write the equation of the hyperboloid as

(x + z)(x − z) = (1 − y)(1 + y)

and show that, for each k �= 0, the line x + z = k(1 + y), x − z =
(1/k)(1 − y) belongs to the surface.
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20. Observe that (x/a2, y/b2, z/c2) = fN for some function f and that an
umbilical point satisfies the equation〈

d(fN )

dt
∧ dα

dt
, N

〉
= 0

for every curve α(t) = (x(t), y(t), z(t)) on the surface. Assume that
z �= 0, multiply this equation by z/c2, and eliminate z and dz/dt (observe
that the equation holds for every tangent vector on the surface). Four
umbilical points are found, namely,

y = 0, x2 = a2 a2 − b2

a2 − c2
, z2 = c2 b2 − c2

a2 − c2
.

The hypothesis z = 0 does not yield any further umbilical points.

21. a. Let dN (v1) = av1 + bv2, dN (v2) = cv1 + dv2. A direct computation
yields

〈d(fN )(v1) ∧ d(fN )(v2), fN 〉 = f 3 det(dN ).

b. Show that fN = (x/a2, y/b2, z/c2) = W , and observe that

d(fN )(v1) =
(

αi

a2
,
βi

b2
,
γi

c2

)
, where v1 = (αi, βi, γi),

i = 1, 2. By choosing v1 so that v1 ∧ v2 = N , conclude that

〈d(fN )(v1) ∧ df (N)(v2), fN 〉 = 〈W, X〉
a2b2c2

1

f
,

where X = (x, y, z), and therefore 〈W, X〉 = 1.

24. d. Choose a coordinate system in R3 so that the origin O is at p ∈ S, the
xy plane agrees with Tp(S), and the positive direction of the z axis
agrees with the orientation of S at p. Furthermore, choose the x and y

axes in Tp(S) along the principal directions at p. If V is sufficiently
small, it can then be represented as the graph of a differentiable
function

z = f (x, y), (x, y) ∈ D ⊂ R2,

where D is an open disk in R2 and

fx(0, 0) = fy(0, 0) = fxy(0, 0) = 0, fxx(0, 0) = k1, fyy(0, 0) = k2.

We can assume, without loss of generality, that k1 ≥ 0 and k2 ≥ 0
on D, and we want to prove that f (x, y) ≥ 0 on D.

806995_.pdf   506 10/4/2016   12:01:22 PM



Hints and Answers 491

Assume that, for some (x̄, ȳ) ∈ D, f (x̄, ȳ) < 0. Consider
the function h0(t) = f (tx̄, t ȳ), 0 ≤ t ≤ 1. Since h′

0(0) = 0,
there exists a t1, 0 ≤ t1 ≤ 1, such that h′′

0(t1) < 0, Let p1 =
(t1x̄, t1ȳ, f (t1x̄, t1ȳ)) ∈ S, and consider the height function h1 of
V relative to the tangent plane Tp1(S) at p1. Restricted to the
curve α(t) = (t x̄, t ȳ, f (t x̄, t ȳ)), this height function is h1(t) =
〈α(t) − p1, N1〉, where N1 is the unit normal vector at p1. Thus,
h′′

1(t) = 〈α′′(t), N1〉, and, at t = t1,

h′′
1(t1) = 〈(0, 0, h′′

0(t1)), (−fx(p1), −fy(p1), 1)〉 = h′′
0(t1) < 0.

But h′′
1(t1) = 〈α′′(t1), N1〉 is, up to a positive factor, the normal

curvature at p1, in the direction of α′(t1). This is a contradiction.

SECTION 3-4

10. c. Reduce the problem to the fact that if λ is an irrationa1 number
and m and n run through the integers, the set {λm + n} is dense
in the real line. To prove the last assertion, it suffices to show that
the set {λm + n} has arbitrarily small positive elements. Assume the
contrary, show that the greatest lower bound of the positive elements
of {λm + n} still belongs to that set, and obtain a contradiction.

11. Consider the set {αi : Ii → U} of trajectories of w, with αi(0) = p, and
set I =⋃

i
Ii . By uniqueness, the maximal trajectory α: I → U may be

defined by setting α(t) = αi(t), where t ∈ Ii .

12. For every q ∈ S, there exist a neighborhood U of q and an interval
(−ε, ε), ε > 0, such that the trajectory α(t), with α(0) = q, is defined
in (−ε, ε). By compactness, it is possible to cover S with a finite number
of such neighborhoods. Let ε0 = minimum of the corresponding ε’s. If
α(t) is defined for t < t0 and is not defined for t0, take t1 ∈ (0, t0), with
|t0 − t1| < ε0/2. Consider the trajectory β(t) of w, with β(t1) = α(t1),
and obtain a contradiction.

SECTION 4-2

3. The “only if” part is immediate.To prove the “if” part, let p ∈
S and v ∈ Tp(S), v �= 0. Consider a curve α: (−ε, ε) → S, with
α′(0) = v. We claim that |dϕp(α

′(0))| = |α′(0)|. Otherwise, say,
|dϕp(α

′(0))| > |α′(0)|, and in a neighborhood J of 0 in (−ε, ε), we
have |dϕα(t)(α

′(t))| > |α′(t)|. This implies that the length of ϕ ◦ α(J ) is
greater than the length of α(J ), a contradiction.
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6. Parametrize α by arc length s in a neighborhood of t0. Construct in the
plane a curve with curvature k = k(s) and apply Exercise 5.

8. Set 0 = (0, 0, 0), G(0) = p0, and G(p) − p0 = F(p). Then F : R3 → R3

is a map such that F(0) = 0 and |F(p)| = |G(p) − G(0)| = |p|. This
implies that F preserves the inner product of R3. Thus, it maps the basis

{(1, 0, 0) = f1, (0, 1, 0) = f2, (0, 0, 1) = f3}
onto an orthonormal basis, and if p =∑ aifi , i = 1, 2, 3, then F(p) =∑

αiF (fi). Therefore, F is linear.

11. a. Since F is distance-preserving and the arc length of a differentiable
curve is the limit of the lengths of inscribed polygons, the restriction
F |S preserves the arc length of a curve in S.

c. Consider the isometry of an open strip of the plane onto a cylinder
minus a generator.

12. The restriction of F(x, y, z) = (x, −y, −z) to C is an isometry of C (cf.
Exercise 11), the fixed points of which are (1, 0, 0) and (−1, 0, 0).

17. The loxodromes make a constant angle with the meridians of the sphere.
Under Mercator’s projection (see Exercise 16) the meridians go into par-
allel straight lines in the plane. Since Mercator’s projection is conformal,
the loxodromes also go into straight lines. Thus, the sum of the interior
angles of the triangle in the sphere is the same as the sum of the interior
angles of a rectilinear plane triangle.

SECTION 4-4

6. Use the fact that the absolute value of the geodesic curvature is the
absolute value of the projection onto the tangent plane of the usual
curvature.

8. Use Exercise 1, part b, and Prop. 4 of Sec. 3-2.

9. Use the fact that the meridians are geodesics and that the parallel transport
preserves angles.

10. Apply the relation k2
g + k2

n = k2 and the Meusnier theorem to the
projecting cylinder.

12. Parametrize a neighborhood of p ∈ S in such a way that the two families
of geodesics are coordinate curves (Corollary 1, Sec. 3-4). Show that
this implies that F = 0, Ev = 0 = Gu. Make a change of parameters to
obtain that F̄ = 0, Ē = Ḡ = 1.

13. Fix two orthogonal unit vectors v(p) and w(p) in Tp(S) and parallel
transport them to each point of V . Two differentiable, orthogonal, unit
vector fields are thus obtained. Parametrize V in such a way that the
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directions of these vectors are tangent to the coordinate curves, which
are then geodesics. Apply Exercise 12.

16. Parametrize a neighborhood of p ∈ S in such a way that the lines of cur-
vature are the coordinate curves and that v = const. are the asymptotic
curves. It follows that ev = 0, and from the Mainardi-Codazzi equa-
tions, we conclude that Ev = 0. This implies that the geodesic curvature
of v = const. is zero. For the example, look at the upper parallel or the
torus.

18. Use Clairaut’s relation (cf. Example 5).

19. Substitute in Eq. (4) the Christoffel symbols by their values as functions
of E, F , and G and differentiate the expression of the first fundamental
form:

1 = E(u′)2 + 2Fu′v′ + G(v′)2.

20. Use Clairaut’s relation.

SECTION 4-5

4. b. Observe that the map x = x̄, y = (ȳ)5, z = (z̄)3 gives a homeomor-
phism of the sphere x2 + y2 + z2 = 1 onto the surface (x̄)2 + (ȳ)10 +
(z̄)6 = 1.

6. a. Restrict v to the curve α(t) = (cos t, sin t), t ∈ [0, 2π ]. The angle
that v(t) forms with the x axis is t . Thus, 2πI = 2π ; hence, I = 1.

d. By restricting v to the curve α(t) = (cos t, sin t), t ∈ [0, 2π ], we
obtain v(t) = (cos2 t − sin2

t, −2 cos t sin t) = (cos 2t,− sin 2t).
Thus, I = −2.

SECTION 4-6

8. Let (ρ, θ) be a system of geodesic polar coordinates such that its pole
is one of the vertices of � and one of the sides of � corresponds to
θ = 0. Let the two other sides be given by θ = θ0 and ρ = h(θ). Since
the vertex that corresponds to the pole does not belong to the coordinate
neighborhood, take a small circle of radius ε around the pole. Then

∫∫
�

K
√

G dρ dθ =
∫ θ0

0

dθ

(
lim
ε→0

∫ h(θ)

ε

K
√

G dρ

)
.
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Observing that K
√

G = −(
√

G)ρρ and that limε→0(
√

G)ρ = 1, we have
that the limit enclosed in parentheses is given by

1 − ∂(
√

G)

∂ρ
(h(θ), θ).

By using Exercise 7, we obtain∫∫
�

K
√

G dρ dθ =
∫ θ0

0

dθ −
∫ θ0

0

dϕ

= α3 − (π − α2 − α1) =
3∑
1

αi − π.

12. c. For K ≡ 0, the problem is trivial. For K > 0, use part b. For K < 0,
consider a coordinate neighborhood V of the pseudosphere (cf.
Exercise 6, part b, Sec. 3-3), parametrized by polar coordinates
(ρ, θ); that is, E = 1 , F = 0, G = sinh2

ρ. Compute the geodesics
of V ; it is convenient to use the change of coordinates tanh ρ = 1/w,
ρ �= 0, θ = θ , so that

E = 1

(w2 − 1)2
, G = 1

w2 − 1
, F = 0,

�1
11 = − 2w

w2 − 1
, �1

12 = − w

w2 − 1
, �1

2 2 = w,

and the other Christoffel symbols are zero. It follows that the non-
radial geodesics satisfy the equation (d2w/dθ 2) + w = 0, where
w = w(θ). Thus, w = A cos θ + B sin θ ; that is

A tanh ρ cos θ + B tanh ρ sin θ = 1.

Therefore, the map of V into R2 given by

ξ = tanh ρ cos θ, η = tanh ρ sin θ,

(ξ, η) ∈ R2, is a geodesic mapping.

13. b. Define x = ϕ−1: ϕ(U) ⊂ R2 → S. Let v = v(u) be a geodesic in U .
Since ϕ is a geodesic mapping and the geodesics of R2 are lines, then
d2v/du2 ≡ 0. By bringing this condition into part a, the required
result is obtained.

c. Equation (a) is obtained from Eq. (5) of Sec. 4-3 using part b. From
Eq. (5a) of Sec. 4-3 together with part b we have

KF = (�1
12)u − 2(�2

12)v + �2
12�

1
12.

By interchanging u and v in the expression above and subtract-
ing the results, we obtain (�1

12)u = (�2
12)v, whence Eq. (b). Finally,
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Eqs. (c) and (d) are obtained from Eqs. (a) and (b), respectively, by
interchanging u and v.

d. By differentiating Eq. (a) with respect to v, Eq. (b) with respect to u,
and subtracting the results, we obtain

EK v − FKu = −K(Ev − Fu) + K(−F�2
12 + E�1

12).

By taking into account the values of �k
ij , the expression above yields

EK v − FKu = −K(Ev − Fu) + K(Ev − Fu) = 0.

Similarly, from Eqs. (c) and (d) we obtain FKv − GKu = 0, whence
Kv = Ku = 0.

SECTION 4-7

1. Consider an orthonormal basis {e1, e2} at Tα(0)(S) and take the par-
allel transport of e1 and e2 along α, obtaining an orthonormal basis
{e1(t), e2(t)} at each Tα(t)(S). Set w(α(t)) = w1(t)e1(t) + w2(t)e2(t).
Then Dyw = w′

1(0)e1 + w′
2(0)e2 and the second member is the velocity

of the curve w1(t)e1 + w2(t)e2 in Tp(S) at t = 0.

2. b. Show that if (t1, t2) ⊂ I is small and does not contain “break points
of α,” then the tangent vector field of α((t1, t2)) can be extended to a
vector field y in a neighborhood of α((t1, t2)). Thus, by restricting v

and w to α, property 3 becomes

d

dt
〈v(t), w(t)〉 =

〈
Dv

dt
, w

〉
+
〈
v,

Dw

dt

〉
,

which implies that parallel transport in α|(t1, t2) is an isometry. By
compactness, this can be extended to the entire I . Conversely, assume
that parallel transport is an isometry. Let α be the trajectory of y

through a point p ∈ S. Restrict v and w to α. Choose orthonor-
mal basis {e1(t), e2(t)} as in the solution of Exercise 1, and set
v(t) = v1e1 + v2e2, w(t) = w1e1 + w2e2. Then property 3 becomes
the “product rule”:

d

dt

(∑
i

viwi

)
=
∑

i

dvi

dt
wi +

∑
i

vi

dwi

dt
, i = 1, 2.

c. Let D be given and choose an orthogonal parametrization x(u, v).
Let y = y1xu + y2xv, w = w1xu + w2xv. From properties 1, 2, and
3, it follows that Dyw is determined by the knowledge of Dxu

xu,

806995_.pdf   511 10/4/2016   12:01:22 PM



496 Hints and Answers

Dxu
xv, Dxv

xv. Set Dxu
xu = A1

11xu + A2
11xv, Dxu

xv = A1
12xu + A2

12xv,
Dxv

xv = A1
22xu + A2

22xv. From property 3 it follows that the Ak
ij sat-

isfy the same equations as the �k
ij (cf. Eq. (2), Sec. 4-3). Thus,

Ak
ij = �k

ij , which proves that Dyv agrees with the operation “Take
the usual derivative and project it onto the tangent plane.”

3. a. Observe that

dx(0,t)(1, 0) =
(

∂x
∂s

)
s=0

= d

ds
γ (s, α(t), v(t))

∣∣∣∣
s=0

= v(t),

dx(0,t)(0, 1) =
(

∂x
∂t

)
s=0

= α′(t).

b. Use the fact that x is a local diffeomorphism to cover the compact
set I with a family of open intervals in which x is one-to-one. Use
the Heine-Borel theorem and the Lebesgue number of the covering
(cf. Sec. 2-7) to globalize the result.

c. To show that F = 0, we compute (cf. property 4 of Exercise 2)

d

ds
F = d

ds

〈
∂x
∂s

,
∂x
∂t

〉
=
〈
D

∂s

∂x
∂s

,
∂x
∂t

〉
+
〈
∂x
∂s

,
D

∂s

∂x
∂t

〉
=
〈
∂x
∂s

,
D

∂t

∂x
∂s

〉
,

because the vector field ∂x/∂s is parallel along t = const. Since

0 = d

dt

〈
∂x
∂s

,
∂x
∂s

〉
= 2

〈
D

∂t

∂x
∂s

,
∂x
∂s

〉
,

F does not depend on s. Since F(0, t) = 0, we have F = 0.

d. This is a consequence of the fact that F = 0.

4. a. Use Schwarz’s inequality,

(∫ b

a

fg dt

)2

≤
∫ b

a

f 2 dt

∫ b

a

g2 dt,

with f ≡ 1 and g = |dα/dt |.
5. a. By noticing that E(t) = ∫ l

0 {(∂u/∂v)2 + G(γ (v, t), v)} dv, we obtain
(we write γ (v, t) = u(v, t), for convenience)

E′(t) =
∫ l

0

{
2
∂u

∂v

∂2u

∂v∂t
+ ∂G

∂u
u′
}

dv.

Since, for t = 0, ∂u/∂v = 0 and ∂G/∂u = 0, we have proved the
first part.
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Furthermore,

E′′(t) =
∫ l

0

{
2

(
∂2u

∂v∂t

)2

+ 2
∂u

∂v

∂3u

∂v∂2t
+ ∂2G

∂u2
(u′)2 + ∂G

∂u
u′′
}

dv.

Hence, by using Guu = −2K
√

G and noting that
√

G = 1 for t = 0, we
obtain

E′′(0) = 2
∫ l

0

{(
dη

dv

)2

− Kη2

}
dv.

6. b. Choose ε > 0 and coordinates in R3 ⊃ S so that ϕ(ρ, ε) = q.
Consider the points (ρ, ε) = r0, (ρ, ε + 2π sin β) = r1, . . . , (ρ, ε +
2πk sin β) = rk. Taking ε sufficiently small, we see that the line seg-
ments r0r1, . . . , r0rk belong to V if 2πk sin β < π (Fig. 4-49). Since
ϕ is a local isometry, the images of these segments will be geodesics
joining q to q, which are clearly broken at q (Fig. 4-49).

c. It must be proved that each geodesic γ : [0, l] → S with γ (0) =
γ (l) = q is the image by ϕ of one of the line segments r0r1, . . . , r0rk

referred to in part b. For some neighborhood U ⊂ V of r0, the
restriction ϕ|U = ϕ̃ is an isometry. Thus, ϕ̃−1 ◦ γ is a segment of a
half-line L starting at r0. Since ϕ(L) is a geodesic which agrees with
γ ([0, l]) in an open interval, it agrees with γ where γ is defined.
Since γ (l) = q, L passes through one of the points ri , i = 1, . . . , k,
say rj , and so γ is the image of r0rj .

SECTION 5-2

3. a. Use the relation ϕ′′ = −Kϕ to obtain (ϕ′2 + Kϕ2)′ = K ′ϕ2. Integrate
both sides of the last relation and use the boundary conditions of the
statement.

SECTION 5-3

5. Assume that every Cauchy sequence in d converges and let γ (s) be
a geodesic parametrized by arc length. Suppose, by contradiction,
that γ (s) is defined for s < s0 but not for s = s0. Choose a sequence
{sn} → s0. Thus, given ε > 0, there exists n0 such that if n, m > n0,
|sn − sm| < ε. Therefore,

d(γ (sm), γ (sn)) ≤ |sn − sm| < ε

and {γ (sn)} is a Cauchy sequence in d . Let {γ (sn)} → p0 ∈ S and let
W be a neighborhood of p0 as given by Prop. 1 of Sec. 4-7. If m, n
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are sufficiently large, the small geodesic joining γ (sm) to γ (sn) clearly
agrees with γ . Thus, γ can be extended through p0, a contradiction.

Conversely, assume that S is complete and let {pn} be a Cauchy
sequence in d of points on S. Since d is greater than or equal to the
Euclidean distance d̄, {pn} is a Cauchy sequence in d̄ . Thus, {pn}
converges to p0 ∈ R3. Assume, by contradiction, that p0 �∈ S. Since a
Cauchy sequence is bounded, given ε > 0 there exists an index n0 such
that, for all n > n0, the distance d(pn0, pn) < ε. By the Hopf-Rinow
theorem, there is a minimal geodesic γn joining pn0 to pn with length
< ε. As n → ∞, γn tends to a minimal geodesic γ with length ≤ ε.
Parametrize γ by arc length s. Then, since p0 �∈ S, γ is not defined for
s = ε. This contradicts the completeness of S.

6. Let {pn} be a sequence of points on S such that d(p, pn) → ∞. Since
S is complete, there is a minimal geodesic γn(s) (parametrized by arc
length) joining p to pn with γn(0) = p. The unit vectors γ ′

n(0) have a
limit point v on the (compact) unit sphere of Tp(S). Let γ (s) = expp sv,
s ≥ 0. Then γ (s) is a ray issuing from p. To see this, notice that, for
a fixed s0 and n sufficiently large, limn→∞ γn(s0) = γ (s0). This follows
from the continuous dependence of geodesics from the initial conditions.
Furthermore, since d is continuous,

lim
n→∞

d(p, γn(s0)) = d(p, γ (s0)).

But if n is large enough, d(p, γn(s0)) = s0. Thus, d(p, γ (s0)) = s0, and
γ is a ray.

8. First show that if d and d̄ denote the intrinsic distances of S and S̄, respec-
tively, then d(p, q) ≥ cd̄(ϕ(p), ϕ(q)) for all p, q ∈ S. Now let {pn} be
a Cauchy sequence in d of points on S. By the initial remark, {ϕ(pn)} is a
Cauchy sequence in d̄. Since S̄ is complete, {ϕ(pn)} → ϕ(p0). Since ϕ−1

is continuous, {pn} → p0. Thus, every Cauchy sequence in d converges;
hence S is complete (cf. Exercise 5).

9. ϕ is one-to-one: Assume, by contradiction, that p1 �= p2 ∈ S1 are such
that ϕ(p1) = ϕ(p2) = q. Since S1 is complete, there is a minimal
geodesic γ joining p1 to p2. Since ϕ is a local isometry, ϕ ◦ γ is a
geodesic joining q to itself with the same length as γ . Any point distinct
from q on ϕ ◦ γ can be joined to q by two geodesics, a contradiction.

ϕ is onto: Since ϕ is a local diffeomorphism, ϕ(S1) ⊂ S2 is an open set
in S2. We shall prove that ϕ(S1) is also closed in S2; since S2 is connected,
this will imply that ϕ(S1) = S2. If ϕ(S1) is not closed in S2, there exists
a sequence {ϕ(pn)}, pn ∈ S1, such that {ϕ(pn)} → p0 ∈ ϕ(S1). Thus,
{ϕ(pn)} is a nonconverging Cauchy sequence in ϕ(S1). Since ϕ is a one-
to-one local isometry, {pn} is a nonconverging Cauchy sequence in S1,
a contradiction to the completeness of S1.
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10. a. Since

d

dt
(h ◦ ϕ(t)) = d

dt
〈ϕ(t), v〉 = 〈ϕ′(t), v〉 = 〈grad h, v〉

and

d

dt
(h ◦ ϕ(t)) = dh(ϕ′(t)) = dh(grad h) = 〈grad h, grad h〉,

we conclude, by equating the last members of the above relations,
that |grad h| ≤ 1.

b. Assume that ϕ(t) is defined for t < t0 but not for t = t0. Then there
exists a sequence {tn} → t0 such that the sequence {ϕ(tn)} does not
converge. If m and n are sufficiently large, we use part a to obtain

d(ϕ(tm), ϕ(tm)) ≤
∫ tm

tn

|grad h(ϕ(t))| dt ≤ |tm − tn|,

where d is the intrinsic distance of S. This implies that {ϕ(tn)}
is a nonconverging Cauchy sequence in d , a contradiction to the
completeness of S.

SECTION 5-4

2. Assume that
lim
r→∞

( inf
x2+y2≥r

K(x, y)) = 2c > 0.

Then there exists R > 0 such that if (x, y) �∈ D, where

D = {(x, y) ∈ R2; x2 + y2 < R2},
then K(x, y) ≥ c. Thus, by taking points outside the disk D, we can
obtain arbitrarily large disks where K(x, y) ≥ c > 0. This is easily seen
to contradict Bonnet’s theorem.

SECTION 5-5

3. b. Assume that a > b and set s = b in relation (∗). Use the initial con-
ditions and the facts v′(b) < 0, u(b) > 0, uv ≥ 0 in [0, b] to obtain
a contradiction.

c. From [uv′ − vu′]s
0 ≥ 0, one obtains v′/v ≥ u′/u; that is, (log v)′ ≥

(log u)′. Now, let 0 < s0 ≤ s ≤ a, and integrate the last inequality
between s0 and s to obtain
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log v(s) − log v(s0) ≥ log u(s) − log u(s0);
that is, v(s)/u(s) ≥ v(s0)/u(s0). Next, observe that

lim
s0→0

v(s0)

u(s0)
= lim

s0→0

v′(s0)

u′(s0)
= 1.

Thus, v(s) ≥ u(s) for all s ∈ [0, a).

6. Suppose, by contradiction, that u(s) �= 0 for all s ∈ (0, s0]. By using
Eq. (∗) of Exercise 3, part b (with K̃ = L and s = s0), we obtain∫ s0

0

(K − L)uv ds + u(s0)v
′(s0) − u(0)v′(0) = 0.

Assume, for instance, that u(s) > 0 and v(s) < 0 on (0, s0]. Then
v′(0) < 0 and v′(s0) > 0. Thus, the first term of the above sum is ≥ 0
and the two remaining terms are > 0, a contradiction. All the other cases
can be treated similarly.

8. Let v be the vector space of Jacobi fields J along γ with the property
that J (l) = 0. v is a two-dimensional vector space. Since γ (l) is not
conjugate to γ (0), the linear map θ : v → Tγ (0)(S) given by θ(J ) = J (0)

is injective, and hence, for dimensional reasons, an isomorphism. Thus,
there exists J ∈ v with J (0) = w0. By the same token, there exists a
Jacobi field J̄ along γ with J̄ (0) = 0, J̄ (l) = w1. The required Jacobi
field is given by J + J̄ .

SECTION 5-6

10. Let γ : [0, l] → S be a simple closed geodesic on S and let v(0) ∈
Tγ (0)(S) be such that |v(0)| = 1, 〈v(0), γ ′(0)〉 = 0. Take the parallel
transport v(s) of v(0) along γ . Since S is orientable, v(l) = v(0) and v

defines a differentiable vector field along γ . Notice that v is orthogonal
to γ and that Dv/ds = 0, s ∈ [0, 1). Define a variation (with free end
points) h: [0, l) × (−ε, ε) → S by

h(s, t) = expγ (s) tv(s).

Check that, for t small, the curves of the variation ht(s) = h(s, t) are
closed. Extend the formula for the second variation of arc length to the
present case, and show that

L′′
v(0) = −

∫ t

0

Kds < 0.

Thus, γ (s) is longer than all curves ht(s) for t small, say, |t | < δ ≤ ε.
By changing the parameter t into t/δ, we obtain the required homotopy.
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SECTION 5-7

9. Use the notion of geodesic torsion τg of a curve on a surface (cf.
Exercise 19, Sec. 3-2). Since

dθ

ds
= τ − τg,

where cos θ = 〈N, n〉 and the curve is closed and smooth, we obtain∫ l

0

τ ds −
∫ l

0

τg ds = 2πn,

where n is an integer. But on the sphere, all curves are lines of curva-
ture. Since the lines of curvature are characterized by having vanishing
geodesic torsion (cf. Exercise 19, Sec. 3-2), we have∫ l

0

τ ds = 2πn.

Since every closed curve on a sphere is homotopic to zero, the integer n

is easily seen to be zero.

SECTION 5-10

7. We have only to show that the geodesics γ (s) parametrized by arc length
which approach the boundary of R2

+ are defined for all values of the
parameter s. If the contrary were true, such a geodesic would have a
finite length l, say, from a fixed point p0. But for the circles of R2

+ that
are geodesics, we have

l =
∣∣∣∣limε→0

∫ ε

θ0>π/2

dθ

sin θ

∣∣∣∣ ≥
∣∣∣∣limε→0

∫ ε

θ0>π/2

cos θdθ

sin θ

∣∣∣∣ = ∞,

and the same holds for the vertical lines of R2
+.

10. c. To prove that the metric is complete, notice first that it dominates the
Euclidean metric on R2. Thus, if a sequence is a Cauchy sequence in
the given metric, it is also a Cauchy sequence in the Euclidean metric.
Since the Euclidean metric is complete, such a sequence converges.
It follows that the given metric is complete (cf. Exercise 1, Sec. 5-3).
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